Skip to main content
Log in

Transient piezoresistive sensors based on tolerable, safe, and semiconductive polypyrrole/vermiculite/alginate frameworks

基于聚吡咯/蛭石/海藻纤维复合半导体材料的瞬态压阻传感器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The rapid development of flexible pressure sensors is driven by the fields of electronic skin, human–machine interaction, and health monitoring. These sensors are urgently required. However, it is challenging to simultaneously meet their durable and transient requirements. In this study, a safe and tolerant polypyrrole/vermiculite/alginate semiconductive framework is developed for flexible transient piezoresistive sensors. Negatively charged vermiculite nanosheets are interlayered into biodegradable alginate fabrics, which are further decorated with conductive polypyrrole. The developed multidimensional framework ensures stability for flexible sensors and can be gradually degraded without producing e-waste after completing its service life. The obtained transient piezoresistive sensors exhibit rapid response/recovery time (81/99 ms) and outstanding fatigue resistance properties. Furthermore, an effective machine learning model is developed for human motion recognition and prediction, achieving 100% accuracy. This study provides a promising strategy for organic–inorganic interface design in flexible transient electronics and shows broad application prospects in flexible platforms based on comfortable biofibers.

摘要

电子皮肤、人机交互和健康监测等领域推动了柔性压力传感器的快速发展. 然而, 同时满足耐用和瞬态的需求对柔性压力传感器是一个巨大的挑战. 本文开发了一种用于柔性瞬态压阻传感器的安全、耐受的聚吡咯/蛭石/海藻酸盐半导体框架. 将带负电荷的蛭石纳米片插层到可生物降解的海藻酸盐织物中, 进一步用高灵敏度的导电聚吡咯修饰. 由此产生的多维框架实现了柔性传感器的稳定性, 并且在使用寿命结束后可以在不留下电子垃圾的情况下逐渐降解. 所获得的瞬态压阻传感器显示出了快速的响应时间(81/99 ms)和出色的抗疲劳性能. 此外, 我们开发了一种有效的机器学习模型用于人体动作识别和预测, 准确率为100%. 本工作为柔性瞬态电子学中有机-无机界面的设计提供了一种有前景的策略, 并在基于舒适生物纤维的柔性平台中展现了广阔的应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gao Y, Yan C, Huang H, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater, 2020, 30: 1909603

    Article  CAS  Google Scholar 

  2. Huang T, Long Y, Dong Z, et al. Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv Sci, 2022, 9: 2204519

    Article  CAS  Google Scholar 

  3. Liu X. The more and less of electronic-skin sensors. Science, 2020, 370: 910–911

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Qiao H, Sun S, Wu P. Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv Mater, 2023, 35: 2300593

    Article  CAS  Google Scholar 

  5. Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, et al. Black phosphorous-based human-machine communication interface. Nat Commun, 2023, 14: 2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Su T, Liu N, Gao Y, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 2021, 87: 106151

    Article  CAS  Google Scholar 

  7. Huang Y, You X, Tang Z, et al. Interface engineering of flexible piezoresistive sensors via near-field electrospinning processed spacer layers. Small Methods, 2021, 5: 2000842

    Article  CAS  Google Scholar 

  8. Duan L, D’hooge DR, Cardon L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog Mater Sci, 2020, 114: 100617

    Article  Google Scholar 

  9. Fu R, Zhao X, Zhang X, et al. Design strategies and applications of wearable piezoresistive strain sensors with dimensionality-based conductive network structures. Chem Eng J, 2023, 454: 140467

    Article  CAS  Google Scholar 

  10. Song D, Zeng MJ, Min P, et al. Electrically conductive and highly compressible anisotropic MXene-wood sponges for multifunctional and integrated wearable devices. J Mater Sci Tech, 2023, 144: 102–110

    Article  CAS  Google Scholar 

  11. Gao X, Zhou F, Li M, et al. Flexible stannum-doped SrTiO3 nanofiber membranes for highly sensitive and reliable piezoresistive pressure sensors. ACS Appl Mater Interfaces, 2021, 13: 52811–52821

    Article  CAS  PubMed  Google Scholar 

  12. Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioin-spired flexible piezoresistive bioelectronics. ACS Nano, 2021, 15: 11555–11563

    Article  CAS  PubMed  Google Scholar 

  13. Cao M, Leng M, Pan W, et al. 3D wearable piezoresistive sensor with waterproof and antibacterial activity for multimodal smart sensing. Nano Energy, 2023, 112: 108492

    Article  CAS  Google Scholar 

  14. Yu Z, Xu J, Gong H, et al. Bioinspired self-powered piezoresistive sensors for simultaneous monitoring of human health and outdoor UV light intensity. ACS Appl Mater Interfaces, 2022, 14: 5101–5111

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Yue Y, Cheng F, et al. Ti3C2T, MXene-based flexible piezoresistive physical sensors. ACS Nano, 2022, 16: 1734–1758

    Article  CAS  PubMed  Google Scholar 

  16. Abolpour Moshizi S, Azadi S, Belford A, et al. Development of an ultrasensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett, 2020, 12: 109

    Article  ADS  Google Scholar 

  17. Yu Q, Su C, Bi S, et al. Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl Mater Interfaces, 2022, 14: 9632–9643

    Article  CAS  PubMed  Google Scholar 

  18. Chen T, Liu Z, Zhao G, et al. Piezoresistive sensor containing lamellar MXene-plant fiber sponge obtained with aqueous MXene ink. ACS Appl Mater Interfaces, 2022, 14: 51361–51372

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Liu Z, Zhao G, et al. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano, 2022, 16: 1661–1670

    Article  CAS  PubMed  Google Scholar 

  20. Cetin MS, Karahan Toprakci HA. Flexible electronics from hybrid nanocomposites and their application as piezoresistive strain sensors. Compos Part B-Eng, 2021, 224: 109199

    Article  CAS  Google Scholar 

  21. Wei Q, Chen G, Pan H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods, 2022, 6: 2101051

    Article  CAS  Google Scholar 

  22. Fu KK, Wang Z, Dai J, et al. Transient electronics: Materials and devices. Chem Mater, 2016, 28: 3527–3539

    Article  CAS  Google Scholar 

  23. Durukan MB, Cicek MO, Doganay D, et al. Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors. Adv Funct Mater, 2021, 32: 2106066

    Article  Google Scholar 

  24. Zhao Y, Tan YJ, Yang W, et al. Scaling metal-elastomer composites toward stretchable multi-helical conductive paths for robust responsive wearable health devices. Adv Healthcare Mater, 2021, 10: 2100221

    Article  CAS  Google Scholar 

  25. Li J, Li N, Zheng Y, et al. Interfacially locked metal aerogel inside porous polymer composite for sensitive and durable flexible piezoresistive sensors. Adv Sci, 2022, 9: 2201912

    Article  CAS  Google Scholar 

  26. Li ZX, Gao XY, Huang P, et al. A flexible carbonized melamine foam/silicone/epoxy composite pressure sensor with temperature and voltage-adjusted piezoresistivity for ultrawide pressure detection. J Mater Chem A, 2022, 10: 9114–9120

    Article  CAS  Google Scholar 

  27. Gao FL, Min P, Gao XZ, et al. Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J Mater Chem A, 2022, 10: 18256–18266

    Article  CAS  Google Scholar 

  28. Ko Y, Kwon M, Bae WK, et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun, 2017, 8: 536

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Abdolmaleki H, Kidmose P, Agarwala S. Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv Mater, 2021, 33: 2006792

    Article  CAS  Google Scholar 

  30. Zhang C, Zheng H, Sun J, et al. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv Mater, 2022, 34: 2105996

    Article  CAS  Google Scholar 

  31. Wang P, Meng Z, Wang X, et al. Double-core-shell polysaccharide polymer networks for highly flexible, safe, and durable supercapacitors. J Mater Chem A, 2022, 10: 8948–8957

    Article  CAS  Google Scholar 

  32. Wang P, Du X, Wang X, et al. Integrated fiber electrodes based on marine polysaccharide for ultrahigh-energy-density flexible supercapacitors. J Power Sources, 2021, 506: 230130

    Article  CAS  Google Scholar 

  33. Du X, Tian W, Pan J, et al. Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy, 2022, 92: 106694

    Article  CAS  Google Scholar 

  34. Wang X, Zhang D, Zhang H, et al. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator. Nano Energy, 2021, 88: 106242

    Article  CAS  Google Scholar 

  35. Chang X, El-Kady MF, Huang A, et al. 3D graphene network with covalently grafted aniline tetramer for ultralong-life supercapacitors. Adv Funct Mater, 2021, 31: 2102397

    Article  CAS  Google Scholar 

  36. Zheng Q, Lee J, Shen X, et al. Graphene-based wearable piezoresistive physical sensors. Mater Today, 2020, 36: 158–179

    Article  Google Scholar 

  37. Chen Y, Lu W, Shen H, et al. Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Appl Catal B-Environ, 2019, 258: 117960

    Article  CAS  Google Scholar 

  38. Sethurajaperumal A, Manohar A, Banerjee A, et al. A thermally insulating vermiculite nanosheet–epoxy nanocomposite paint as a fireresistant wood coating. Nanoscale Adv, 2021, 3: 4235–4243

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Shao JJ, Raidongia K, Koltonow AR, et al. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat Commun, 2015, 6: 7602

    Article  PubMed  ADS  Google Scholar 

  40. Wang X, Spörer Y, Leuteritz A, et al. Comparative study of the synergistic effect of binary and ternary LDH with intumescent flame retardant on the properties of polypropylene composites. RSC Adv, 2015, 5: 78979–78985

    Article  CAS  ADS  Google Scholar 

  41. Jiang M, Li B, Jia W, et al. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy, 2022, 93: 106830

    Article  CAS  Google Scholar 

  42. Ogbeide O, Bae G, Yu W, et al. Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv Funct Mater, 2022, 32: 2113348

    Article  CAS  Google Scholar 

  43. Saad AG, Emad-Eldeen A, Tawfik WZ, et al. Data-driven machine learning approach for predicting the capacitance of graphene-based supercapacitor electrodes. J Energy Storage, 2022, 55: 105411

    Article  Google Scholar 

  44. Yang H, Fang L, Yuan Z, et al. Machine learning guided 3D printing of carbon microlattices with customized performance for supercapacitive energy storage. Carbon, 2023, 201: 408–414

    Article  CAS  Google Scholar 

  45. Luo Y, Li Y, Sharma P, et al. Learning human–environment interactions using conformal tactile textiles. Nat Electron, 2021, 4: 193–201

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taishan Scholar Program of Shandong Province (tsqn201812055 and tspd20181208), the National Natural Science Foundation of China (51973099), the Central Government Guiding Funds for Local Science and Technology Development (Z135050009017 and 2022ZY015), the Open Laboratory of State Key Laboratory of Organic and Inorganic Composites (oic-202301006), and the Youth Innovation Team Project of Shandong Province, China (2021KJ018).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang P carried out the project and wrote the original draft; Liang J took part in the data analysis and discussion. Tian W, Zhang K and Xia Y directed the research in the whole process and revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Weiliang Tian  (田维亮) or Kewei Zhang  (张克伟).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Pengzhen Wang received his MSc degree from the Institute of Applied Chemistry, Xinjiang University in 2019. Currently, he is a PhD candidate at the State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University. His current research focuses on seaweed polysaccharide-based materials for flexible energy storage and sensing.

Kewei Zhang received his PhD degree from Beijing University of Chemical Technology majored in chemical engineering and technology. Currently, he is a professor at Qingdao University, China. His research interests focus on functional semiconductor materials, bio-based flexible electronics, micro/nano energy and sensing technology.

Weiliang Tian received his BS degree from China University of Petroleum (East China), and PhD degree from Beijing University of Chemical Technology. He is currently a professor at the College of Chemistry and Chemical Engineering, Tarim University. His main research interests focus on the exfoliation of vermiculite, assembly of organic-inorganic nanocomposites, and their applications in the field of energy and environment.

Supporting Information

40843_2023_2704_MOESM1_ESM.pdf

Transient piezoresistive sensors based on tolerable, safe, and semiconductive polypyrrole/vermiculite/alginate frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liang, J., Tian, W. et al. Transient piezoresistive sensors based on tolerable, safe, and semiconductive polypyrrole/vermiculite/alginate frameworks. Sci. China Mater. 67, 580–587 (2024). https://doi.org/10.1007/s40843-023-2704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2704-9

Keywords

Navigation