Skip to main content
Log in

Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction

羧基表面修饰与钾离子层间调控双重优化的氮化碳用于增强CO2光还原性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Simultaneous optimization of surface and interlayer characteristics of graphite-phase carbon nitride (g-C3N4) is crucial for enhanced photogenerated-carrier separation efficiency. Integration of distinct strategies with specific merits for constructing efficacious charge carrier transport pathways from bulk to surface faces challenges. Herein, we proposed a novel carboxyl functional group and potassium (K) ions co-modified g-C3N4 for steering dynamic charge transfer processes. Specifically, carboxyl functional groups were grafted to the surface to substantially improve charge carrier dynamics through the driving force induced by its electron-withdrawing effects. Concurrently, K ions were inserted into the interlayers of g-C3N4 to facilitate interlayer carrier transport by bridging adjacent layers. Such a bi-functional photocatalyst achieves 8.68-fold increase in CO yield compared wtih the pristine g-C3N4 without any cocatalyst or sacrificial agent. This work provides a profound discernment into the directional transport of charge carriers within the surface and interlayers, and presents a promising approach for rational design of photocatalysts with remarkably efficient solar energy conversion.

摘要

对石墨相氮化碳(g-C3N4)的表面和层间结构进行同时优化, 可以显著提高其光生载流子分离效率. 然而, 将具有特定优势的改性策略有效整合, 从而构建由体相到表面的电荷传输通道仍存在巨大挑战. 在此, 我们提出了一种利用羧基和钾离子共修饰g-C3N4的新方法, 用于引导其动态电荷转移过程. 具体而言, 我们将羧基官能团修饰在表面, 通过其吸电子效应产生的驱动力改善表面的载流子动力学. 同时, 我们将钾离子插入g-C3N4层间, 通过连接相邻层间促进载流子的跨层传输. 该双功能光催化剂在无需助催化剂或牺牲剂的气固体系中实现了高达17.93 µmol g−1 h−1的CO产出速率, 比未改性的g-C3N4高出8.68倍. 这项工作有望进一步加深我们对光催化剂材料体相和层间区域载流子定向迁移机制的理解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Nguyen HL. Reticular materials for artificial photoreduction of CO2. Adv Energy Mater, 2020, 10: 2002091

    Article  CAS  Google Scholar 

  3. Wang S, Xu M, Peng T, et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat Commun, 2019, 10: 676

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng L, Zhang P, Wen Q, et al. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin J Catal, 2022, 43: 451–460

    Article  CAS  Google Scholar 

  5. Xia X, Pan JH, Pan X, et al. Photochemical conversion and storage of solar energy. ACS Energy Lett, 2019, 4: 405–410

    Article  CAS  Google Scholar 

  6. Li F, Yue X, Liao Y, et al. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat Commun, 2023, 14: 3901

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo Z, Ye X, Zhang S, et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat Commun, 2022, 13: 2230

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yue X, Fan J, Xiang Q. Internal electric field on steering charge migration: Modulations, determinations and energy-related applications. Adv Funct Mater, 2022, 32: 2110258

    Article  CAS  Google Scholar 

  9. Li Y, Zhang D, Fan J, et al. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin J Catal, 2021, 42: 627–636

    Article  CAS  Google Scholar 

  10. Liu J, Fu W, Liao Y, et al. Recent advances in crystalline carbon nitride for photocatalysis. J Mater Sci Tech, 2021, 91: 224–240

    Article  CAS  Google Scholar 

  11. Shen R, He K, Zhang A, et al. In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B-Environ, 2021, 291: 120104

    Article  CAS  Google Scholar 

  12. Li Y, Li X, Zhang H, et al. Design and application of active sites in g-C3N4-based photocatalysts. J Mater Sci Tech, 2020, 56: 69–88

    Article  Google Scholar 

  13. Ye R, Zhao J, Wickemeyer BB, et al. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat Catal, 2018, 1: 318–325

    Article  Google Scholar 

  14. Ding C, Lu X, Tao B, et al. Interlayer spacing regulation by single-atom indiumδ+-N4 on carbon nitride for boosting CO2/CO photo-conversion. Adv Funct Mater, 2023, 33: 2302824

    Article  CAS  Google Scholar 

  15. Lau VW, Moudrakovski I, Botari T, et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun, 2016, 7: 12165

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh HM, Jeong H, Han GH, et al. Modulating electronic properties of monolayer MoS2 via electron-withdrawing functional groups of graphene oxide. ACS Nano, 2016, 10: 10446–10453

    Article  CAS  PubMed  Google Scholar 

  17. Yang C, Ma BC, Zhang L, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed, 2016, 55: 9202–9206

    Article  CAS  Google Scholar 

  18. Tian J, Zhang L, Wang M, et al. Remarkably enhanced H2 evolution activity of oxidized graphitic carbon nitride by an extremely facile K2CO3-activation approach. Appl Catal B-Environ, 2018, 232: 322–329

    Article  CAS  Google Scholar 

  19. Yu S, Li J, Zhang Y, et al. Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy, 2018, 50: 383–392

    Article  CAS  Google Scholar 

  20. Meng N, Ren J, Liu Y, et al. Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy Environ Sci, 2018, 11: 566–571

    Article  CAS  Google Scholar 

  21. Xia P, Antonietti M, Zhu B, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv Funct Mater, 2019, 29: 1900093

    Article  Google Scholar 

  22. Song Y, Qu K, Zhao C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater, 2010, 22: 2206–2210

    Article  CAS  PubMed  Google Scholar 

  23. Bai JY, Wang LJ, Zhang YJ, et al. Carboxyl functionalized graphite carbon nitride for remarkably enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 266: 118590

    Article  CAS  Google Scholar 

  24. Li H, Li R, Liu G, et al. Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis. Adv Mater, 2023, 2301307

  25. Bie C, Cheng B, Fan J, et al. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3: 100051

    Article  CAS  Google Scholar 

  26. Xiao X, Gao Y, Zhang L, et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater, 2020, 32: 2003082

    Article  CAS  Google Scholar 

  27. Zhong B, Wan S, Kuang P, et al. Crystalline/amorphous Ni/NixSy supported on hierarchical porous nickel foam for high-current-density hydrogen evolution. Appl Catal B-Environ, 2024, 340: 123195

    Article  CAS  Google Scholar 

  28. Liu T, Yang Y, Cao S, et al. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery. Adv Mater, 2023, 35: 2207752

    Article  CAS  Google Scholar 

  29. Cheng L, Zhang D, Liao Y, et al. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci, 2019, 555: 94–103

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Yang W, Godin R, Kasap H, et al. Electron accumulation induces efficiency bottleneck for hydrogen production in carbon nitride photocatalysts. J Am Chem Soc, 2019, 141: 11219–11229

    Article  CAS  PubMed  Google Scholar 

  31. Wepasnick KA, Smith BA, Schrote KE, et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, 49: 24–36

    Article  CAS  Google Scholar 

  32. Sivanantham M, Kesavamoorthy R, Sairam TN, et al. Stimulus response and molecular structural modification of polyacrylamide gel in nitric acid: A study by Raman, FTIR, and photoluminescence techniques. J Polym Sci B Polym Phys, 2008, 46: 710–720

    Article  ADS  CAS  Google Scholar 

  33. Wang H, Jiang S, Chen S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv Mater, 2016, 28: 6940–6945

    Article  CAS  PubMed  Google Scholar 

  34. He N, Guo Z, Zhang C, et al. Bifunctional 2D/2D g-C3N4/BiO2−x nanosheets heterojunction for bacterial disinfection mechanisms under visible and near-infrared light irradiation. J Hazard Mater, 2022, 436: 129123

    Article  CAS  PubMed  Google Scholar 

  35. Fang Z, Zhang J, Yan X, et al. Simultaneous and efficient removal of oleophilic and hydrophilic stains from polyurethane by the combination of easy-cleaning and self-cleaning. ACS Appl Mater Interfaces, 2022, 14: 16641–16648

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Chen F, Wang X, et al. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance. Appl Surf Sci, 2018, 427: 645–653

    Article  ADS  CAS  Google Scholar 

  37. Yang X, Li J, Liu J, et al. Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: Preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A, 2014, 2: 1550–1559

    Article  ADS  CAS  Google Scholar 

  38. Zhou G, Zheng LL, Wang D, et al. A general strategy via chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chem Commun, 2019, 55: 4150–4153

    Article  CAS  Google Scholar 

  39. Lin B, Yang G, Wang L. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution. Angew Chem Int Ed, 2019, 58: 4587–4591

    Article  CAS  Google Scholar 

  40. Jing L, Zhu R, Phillips DL, et al. Effective prevention of charge trapping in graphitic carbon nitride with nanosized red phosphorus modification for superior photo(electro)catalysis. Adv Funct Mater, 2017, 27: 1703484

    Article  Google Scholar 

  41. Zhang L, Ran J, Qiao SZ, et al. Characterization of semiconductor photocatalysts. Chem Soc Rev, 2019, 48: 5184–5206

    Article  CAS  PubMed  Google Scholar 

  42. Gao D, Deng P, Zhang J, et al. Reversing free-electron transfer of MoS2+x cocatalyst for optimizing antibonding-orbital occupancy enables high photocatalytic H2 evolution. Angew Chem Int Ed, 2023, 62: e202304559

    Article  CAS  Google Scholar 

  43. Zhao M, Liu S, Chen D, et al. A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation. Chin J Catal, 2022, 43: 2615–2624

    Article  CAS  Google Scholar 

  44. Li Y, Jin R, Xing Y, et al. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv Energy Mater, 2016, 6: 1601273

    Article  Google Scholar 

  45. Zhou G, Wu MF, Xing QJ, et al. Synthesis and characterizations of metal-free semiconductor/MOFs with good stability and high photocatalytic activity for H2 evolution: A novel Z-scheme heterostructured photocatalyst formed by covalent bonds. Appl Catal B-Environ, 2018, 220: 607–614

    Article  CAS  Google Scholar 

  46. Zhao JJ, Li YH, Liu PF, et al. Local coulomb attraction for enhanced H2 evolution stability of metal sulfide photocatalysts. Appl Catal B-Environ, 2018, 221: 152–157

    Article  CAS  Google Scholar 

  47. Ma X, Wang L, Zhang Q, et al. Switching on the photocatalysis of metal–organic frameworks by engineering structural defects. Angew Chem Int Ed, 2019, 58: 12175–12179

    Article  CAS  Google Scholar 

  48. Li F, Cheng L, Fan J, et al. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: A new insight and perspective. J Mater Chem A, 2021, 9: 23765–23782

    Article  CAS  Google Scholar 

  49. Huang J, Li D, Liu Y, et al. Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. J Hazard Mater, 2020, 392: 122355

    Article  CAS  PubMed  Google Scholar 

  50. Li F, Yue X, Zhang D, et al. Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2021, 292: 120179

    Article  CAS  Google Scholar 

  51. Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys, 1990, 92: 5397–5403

    Article  ADS  CAS  Google Scholar 

  52. Cheng L, Yue X, Fan J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv Mater, 2022, 34: 2200929

    Article  CAS  Google Scholar 

  53. Gao D, Xu J, Wang L, et al. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv Mater, 2022, 34: 2108475

    Article  CAS  Google Scholar 

  54. Gao D, Long H, Wang X, et al. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv Funct Mater, 2023, 33: 2209994

    Article  CAS  Google Scholar 

  55. Ran J, Guo W, Wang H, et al. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv Mater, 2018, 30: 1800128

    Article  Google Scholar 

  56. Li S, Lin J, Ding Y, et al. Defects engineering of lightweight metal–organic frameworks-based electrocatalytic membrane for high-loading lithium–sulfur batteries. ACS Nano, 2021, 15: 13803–13813

    Article  CAS  PubMed  Google Scholar 

  57. Ding T, Liu X, Tao Z, et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J Am Chem Soc, 2021, 143: 11317–11324

    Article  CAS  PubMed  Google Scholar 

  58. Liu S, Liu D, Sun Y, et al. Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions. Appl Catal B-Environ, 2022, 310: 121327

    Article  CAS  Google Scholar 

  59. Sun T, Li C, Bao Y, et al. S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production. Acta Physico Chim Sin, 2023, 39: 2212009

    Article  Google Scholar 

  60. Luo C, Long Q, Cheng B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded g-C3N4 and BiOCl for photocatalytic CO2 reduction. Acta Physico Chim Sin, 2023, 39: 2212026

    Article  Google Scholar 

  61. Sayed M, Zhu B, Kuang P, et al. EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-scheme heterojunction for enhanced CO2 photoreduction. Adv Sustain Syst, 2022, 6: 2100264

    Article  CAS  Google Scholar 

  62. Wageh S, Al-Hartomy OA, Alotaibi MF, et al. Ionized cocatalyst to promote CO2 photoreduction activity over core–triple-shell ZnO hollow spheres. Rare Met, 2022, 41: 1077–1079

    Article  CAS  Google Scholar 

  63. Cheng L, Li B, Yin H, et al. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 118: 54–63

    Article  CAS  Google Scholar 

  64. Zhang Y, Chen Y, Liu R, et al. Oxygen vacancy stabilized Bi2O2CO3 nanosheet for CO2 electroreduction at low overpotential enables energy efficient CO-production of formate. InfoMat, 2023, 5: e12375

    Article  CAS  Google Scholar 

  65. Zhang X, Xue D, Jiang S, et al. Rational confinement engineering of MOF-derived carbon-based electrocatalysts toward CO2 reduction and O2 reduction reactions. InfoMat, 2022, 4: e12257

    Article  CAS  Google Scholar 

  66. Wang L, Yu J. CO2 capture and in situ photocatalytic reduction. Chem Catal, 2022, 2: 428–430

    Article  CAS  Google Scholar 

  67. Yue X, Cheng L, Li F, et al. Highly strained Bi-MOF on bismuth oxyhalide support with tailored intermediate adsorption/desorption capability for robust CO2 photoreduction. Angew Chem Int Ed, 2022, 61: e202208414

    Article  ADS  CAS  Google Scholar 

  68. Li F, Yue X, Cheng L, et al. Hydrophobicity-aerophilicity effect boosting efficient CO2 photoreduction in graphitic carbon nitride modified with fluorine-containing groups. Chem Eng J, 2023, 452: 139463

    Article  CAS  Google Scholar 

  69. Huang G, Lin G, Niu Q, et al. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. J Mater Sci Tech, 2022, 116: 41–49

    Article  CAS  Google Scholar 

  70. Zhang J, Fu J, Dai K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J Mater Sci Tech, 2022, 116: 192–198

    Article  CAS  Google Scholar 

  71. Wang L, Zhu B, Zhang J, et al. S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  72. Sayed M, Xu F, Kuang P, et al. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat Commun, 2021, 12: 4936

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (22272019), and Sichuan Science and Technology Program (2022ZYD0039, 2022NSFSC1213 and 2023NSFSC1069). Dr. Tingchuan Zhou is acknowledged for the SEM observation, from the Analysis and Testing Center, University of Electronic Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Guan C conceived the idea, designed the experiments, and wrote the original draft. Liao Y participated in the design and layout of the pictures and reviewed the manuscript. Xiang Q supervised the work, and reviewed and revised the manuscript.

Corresponding author

Correspondence to Quanjun Xiang  (向全军).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Chen Guan is a PhD candidate in Prof. Quanjun Xiang’s group at the University of Electronic Science and Technology of China. His current research interests mainly focus on the design of high-performance CO2 photocatalysts and the study of mechanism for CO2 reduction.

Quanjun Xiang received his PhD degree in materials chemistry & physics in 2012 from Wuhan University of Technology. He was a postdoctoral fellow at the City University of Hong Kong from 2013 to 2015 and an associate professor from 2012 to 2017 at Huazhong Agricultural University. He is now a professor at the School of Electronic Science and Engineering, University of Electronic Science and Technology of China. His research interests include semiconductor photocatalytic materials, photocatalytic hydrogen production, and photocatalytic CO2 reduction to hydrocarbon fuels.

Electronic supplementary material

40843_2023_2703_MOESM1_ESM.pdf

Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Liao, Y. & Xiang, Q. Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction. Sci. China Mater. 67, 473–483 (2024). https://doi.org/10.1007/s40843-023-2703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2703-0

Keywords

Navigation