Skip to main content
Log in

Customizing the synergy of reactive oxygen species and photoactive charges on Bi2O2CO3/ZnIn2S4 for the selective photooxidation transformation of 5-hydroxymethylfurfural

Bi2O2CO3/ZnIn2S4上活性氧物种和光活性电荷的协同作用实现5-羟甲基糠醛的选择性光氧化转化

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The photooxidation of renewable bioderivatives into value-added chemicals is highly significant; however, it typically exhibits low selectivity owing to the challenges in controlling the oxidative species and managing the desirable reaction pathways. In this work, we used the Bi2O2CO3/ZnIn2S4 heterostructure, prepared by a CO2-mediated solid–solid phase transition, to catalyze the photooxidation of bioderived 5-hydroxymethylfurfural (HMF) into 2,5-diformylfuran (DFF) with a high selectivity of 98.1% and a yield rate of 882.6 µmol g−1 h−1. The metal carbonate/oxide heterointerface enables the effective transfer of photoactive electrons and holes, optimizes surface oxygen activation, and facilitates the synergy of ·OOH and holes to selectively convert HMF into DFF. The findings unravel how the tailoring and coupling of the electron–hole pairs and reactive oxygen species on heterostructured materials can promote the usage of renewable feedstocks for sustainable development.

摘要

光氧化转化可再生生物质衍生物为高附加值的化学品具有重要意义, 但由于在控制氧化物种和理想的反应途径方面存在挑战, 其选择性通常较低. 本工作报道了利用CO2气体介导的固固相变法制备Bi2O2CO3/ZnIn2S4异质结构, 用于光氧化转化生物质衍生的5-羟甲基糠醛(HMF)生成2,5-二甲酰基呋喃(DFF), 其选择性高达98.1%, 产率达882.6 μmol g−1h−1. 金属碳酸盐/氧化物异质界面诱导了光活性电子和空穴的有效转移, 优化了表面氧的活化, 促进了·OOH和空穴的协同作用, 进而可以选择性地将HMF转化为DFF. 本工作表明异质界面上电子-空穴对和活性氧物种的调控有助于利用可再生原料实现可持续发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xiong L, Tang J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater, 2021, 11: 2003216

    Article  CAS  Google Scholar 

  2. Kou J, Lu C, Wang J, et al. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev, 2017, 117: 1445–1514

    Article  CAS  Google Scholar 

  3. Feng X, Pi Y, Song Y, et al. Integration of earth-abundant photosensitizers and catalysts in metal-organic frameworks enhances photocatalytic aerobic oxidation. ACS Catal, 2021, 11: 1024–1032

    Article  CAS  Google Scholar 

  4. Zhu P, Zhang W, Li Q, et al. Visible-light-driven photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over plasmonic Au/ZnO catalyst. ACS Sustain Chem Eng, 2022, 10: 8778–8787

    Article  CAS  Google Scholar 

  5. Wang J, Yuan Y, Ren K, et al. Efficient acceptorless dehydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) over Pt/CdS under visible light. J Catal, 2023, 417: 178–184

    Article  CAS  Google Scholar 

  6. Li J, Bao W, Tang Z, et al. Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chem, 2019, 21: 6073–6081

    Article  CAS  Google Scholar 

  7. Li J, Xu Y, Ding Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective. Chem Eng J, 2020, 388: 124248

    Article  CAS  Google Scholar 

  8. Lu G, Chu F, Huang X, et al. Recent advances in metal-organic frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev, 2022, 450: 214240

    Article  CAS  Google Scholar 

  9. Ayed C, Huang W, Kizilsavas G, et al. Photocatalytic partial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) over a covalent triazine framework in water. ChemPhotoChem, 2020, 4: 571–576

    Article  CAS  Google Scholar 

  10. Xia T, Gong W, Chen Y, et al. Sunlight-driven highly selective catalytic oxidation of 5-hydroxymethylfurfural towards tunable products. Angew Chem Int Ed, 2022, 61: e202204225

    Article  CAS  Google Scholar 

  11. Yu W, Zhang D, Guo X, et al. Enhanced visible light photocatalytic non-oxygen coupling of amines to imines integrated with hydrogen production over Ni/CdS nanoparticles. Catal Sci Technol, 2018, 8: 5148–5154

    Article  CAS  Google Scholar 

  12. Wang T, Tao X, Li X, et al. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small, 2021, 17: 2006255

    Article  CAS  Google Scholar 

  13. Wu B, Zhang L, Jiang B, et al. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew Chem Int Ed, 2021, 60: 4815–4822

    Article  CAS  Google Scholar 

  14. Lin Q, Li YH, Qi MY, et al. Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4. Appl Catal B-Environ, 2020, 271: 118946

    Article  CAS  Google Scholar 

  15. Jiao L, Zhang D, Hao Z, et al. Modulating the energy band to inhibit the over-oxidation for highly selective anisaldehyde production coupled with robust H2 evolution from water splitting. ACS Catal, 2021, 11: 8727–8735

    Article  CAS  Google Scholar 

  16. Zhang Q, Zhang H, Gu B, et al. Sunlight-driven photocatalytic oxidation of 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. Appl Catal B-Environ, 2023, 320: 122006

    Article  CAS  Google Scholar 

  17. Cui C, Zhao X, Su X, et al. Selective oxidation of benzyl alcohol using a Ni(OH)2-modified CdS-MoS2 composite photocatalyst under ambient conditions. J Environ Chem Eng, 2021, 9: 106416

    Article  CAS  Google Scholar 

  18. Zhang L, Tan L, Yuan Z, et al. Engineering of Bi2O2CO3/Ti3C2Tx heterojunctions co-embedded with surface and interface oxygen vacancies for boosted photocatalytic degradation of levofloxacin. Chem Eng J, 2023, 452: 139327

    Article  CAS  Google Scholar 

  19. Qian H, Hou Q, Zhang W, et al. Construction of electron transport channels and oxygen adsorption sites to modulate reactive oxygen species for photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Appl Catal B-Environ, 2022, 319: 121907

    Article  CAS  Google Scholar 

  20. Foster HA, Ditta IB, Varghese S, et al. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol, 2011, 90: 1847–1868

    Article  CAS  Google Scholar 

  21. Wen Y, Yan J, Yang B, et al. Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications. J Mater Chem A, 2022, 10: 19184–19210

    Article  CAS  Google Scholar 

  22. Li H, Zhao H, Dong Y, et al. Highly selective photocatalytic oxidation biomass valorization over Nb2O5/g-C3N4 heterojunction. Adv Energy Sustain Res, 2022, 3: 2200116

    Article  CAS  Google Scholar 

  23. Zhong JJ, To WP, Liu Y, et al. Efficient acceptorless photo-dehydrogenation of alcohols and N-heterocycles with binuclear platinum(II) diphosphite complexes. Chem Sci, 2019, 10: 4883–4889

    Article  CAS  Google Scholar 

  24. Wang D, Zhao L, Ma H, et al. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals. Environ Sci Technol, 2017, 51: 10137–10145

    Article  CAS  Google Scholar 

  25. Li JY, Li YH, Qi MY, et al. Selective organic transformations over cadmium sulfide-based photocatalysts. ACS Catal, 2020, 10: 6262–6280

    Article  CAS  Google Scholar 

  26. Wu X, Xie S, Zhang H, et al. Metal sulfide photocatalysts for lignocellulose valorization. Adv Mater, 2021, 33: 2007129

    Article  CAS  Google Scholar 

  27. Zhu Q, Zhuang Y, Zhao H, et al. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions. Chin J Chem Eng, 2023, 54: 180–191

    Article  CAS  Google Scholar 

  28. Wang Y, Kong X, Jiang M, et al. A Z-scheme ZnIn2S4/Nb2O5 nanocomposite: Constructed and used as an efficient bifunctional photocatalyst for H2 evolution and oxidation of 5-hydroxymethylfurfural. Inorg Chem Front, 2020, 7: 437–446

    Article  CAS  Google Scholar 

  29. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  30. Zhao L, Yang B, Zhuang G, et al. Thin in-plane In2O3/ZnIn2S4 heterostructure formed by topological-atom-extraction: Optimal distance and charge transfer for effective CO2 photoreduction. Small, 2022, 18: 2201668

    Article  CAS  Google Scholar 

  31. Xia Z, Yu R, Yang H, et al. Novel 2D Zn-porphyrin metal organic frameworks revived CdS for photocatalysis of hydrogen production. Int J Hydrogen Energy, 2022, 47: 13340–13350

    Article  CAS  Google Scholar 

  32. Zhang Q, Gu H, Wang X, et al. Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: Extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation. Appl Catal B-Environ, 2021, 298: 120632

    Article  CAS  Google Scholar 

  33. Xi Q, Xie F, Liu J, et al. In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: Manipulation of local coordination and electronic structure. Small, 2023, 19: 2300717

    Article  CAS  Google Scholar 

  34. Li Z, Huang W, Liu J, et al. Embedding CdS@Au into ultrathin Ti3−xC2Ty to build dual Schottky barriers for photocatalytic H2 production. ACS Catal, 2021, 11: 8510–8520

    Article  CAS  Google Scholar 

  35. Deng F, Peng J, Li X, et al. Metal sulfide-based Z-scheme heterojunctions in photocatalytic removal of contaminants, H2 evolution and CO2 reduction: Current status and future perspectives. J Cleaner Product, 2023, 416: 137957

    Article  CAS  Google Scholar 

  36. Feng J, An C, Dai L, et al. Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. Chem Eng J, 2016, 283: 351–357

    Article  CAS  Google Scholar 

  37. Cao X, Hong T, Yang R, et al. Insights into the catalytic activity of barium carbonate for oxygen reduction reaction. J Phys Chem C, 2016, 120: 22895–22902

    Article  CAS  Google Scholar 

  38. Li M, Sun Z, Yang W, et al. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3−δ by strontium carbonate. Phys Chem Chem Phys, 2017, 19: 503–509

    Article  CAS  Google Scholar 

  39. Wang P, Shen Z, Xia Y, et al. Atomic insights for optimum and excess doping in photocatalysis: A case study of few-layer Cu-ZnIn2S4. Adv Funct Mater, 2019, 29: 1807013

    Article  Google Scholar 

  40. Yu S, Zhang G, Gao Y, et al. Single-crystalline Bi5O7NO3 nanofibers: Hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties J Colloid Interface Sci, 2011, 354: 322–330

    Article  CAS  Google Scholar 

  41. Tian N, Huang H, Guo Y, et al. A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for Rhodamine B degradation. Appl Surf Sci, 2014, 322: 249–254

    Article  CAS  Google Scholar 

  42. Wang L, Qi Y, Li H, et al. Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Sci China Mater, 2022, 65: 974–984

    Article  CAS  Google Scholar 

  43. Lin M, Cao R, Luo Y, et al. Built-in electric field directs electron transport at ultrathin Ni(OH)2/metal-organic framework interface for efficient photocatalytic CO2 reduction. ACS Appl Energy Mater, 2022, 5: 2161–2168

    Article  CAS  Google Scholar 

  44. Hu J, Chen C, Zheng Y, et al. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small, 2020, 16: 2002988

    Article  CAS  Google Scholar 

  45. Zhang T, Zhao X, Lin M, et al. Surfactant-free synthesis of ordered 1D/2D NiZn-LDH heterostructure through oriented attachment for efficient photocatalytic CO2 reduction with nearly 100% CO selectivity. Sci China Mater, 2023, 66: 2308–2316

    Article  CAS  Google Scholar 

  46. Ren T, Huang H, Li N, et al. 3D hollow MXene@ZnIn2S4 heterojunction with rich zinc vacancies for highly efficient visible-light photocatalytic reduction. J Colloid Interface Sci, 2021, 598: 398–408

    Article  CAS  Google Scholar 

  47. Zhang P, Rao Y, Huang Y, et al. Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NOx oxidation: Intensified hot-electron transfer and reactive oxygen species generation. Chem Eng J, 2021, 420: 129814

    Article  CAS  Google Scholar 

  48. Zuo G, Ma S, Yin Z, et al. Z-scheme modulated charge transfer on InVO4@ZnIn2S4 for durable overall water splitting. Small, 2023, 19: 2207031

    Article  CAS  Google Scholar 

  49. Chang J, Li Q, Yan Y, et al. Covalent-bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo-oxidation biomass valorization. Angew Chem Int Ed, 2022, 61: e202209289

    Article  CAS  Google Scholar 

  50. Su F, Mathew SC, Lipner G, et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J Am Chem Soc, 2010, 132: 16299–16301

    Article  CAS  Google Scholar 

  51. Kumar A, Srivastava R. Rose-like Bi2WO6 nanostructure for visible-light-assisted oxidation of lignocellulose-derived 5-hydroxymethylfurfural and vanillyl alcohol. ACS Appl Nano Mater, 2021, 4: 9080–9093

    Article  CAS  Google Scholar 

  52. Khan A, Goepel M, Kubas A, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by visible light-driven photocatalysis over in situ substrate-sensitized titania. ChemSusChem, 2021, 14: 1351–1362

    Article  CAS  Google Scholar 

  53. Zhao C, Wang X, Yin Y, et al. Molecular level modulation of anthraquinone-containing resorcinol-formaldehyde resin photocatalysts for H2O2 production with exceeding 1.2 % efficiency. Angew Chem Int Ed, 2023, 62: e202218318

  54. Zhang K, Dan M, Yang J, et al. Surface energy mediated sulfur vacancy of ZnIn2S4 atomic layers for photocatalytic H2O2 production. Adv Funct Mater, 2023, 33: 2302964

    Article  CAS  Google Scholar 

  55. Li C, Li J, Qin L, et al. Recent advances in the photocatalytic conversion of biomass-derived furanic compounds. ACS Catal, 2021, 11: 11336–11359

    Article  CAS  Google Scholar 

  56. Cui J, Lu X, Guo M, et al. Construction of a g-C3N4-driven photocatalytic system for boosted biomass-derived alcohol oxidation: A promising route towards sustainable biomass valorization. Catal Sci Technol, 2023, 13: 940–957

    Article  CAS  Google Scholar 

  57. Challagulla S, Nagarjuna R, Ganesan R, et al. Acrylate-based polymerizable sol–gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(VI) photoreduction in aerobic atmosphere. ACS Sustain Chem Eng, 2016, 4: 974–982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program/Key Scientific Issues of Transformative Technology (2020YFA0710303), the National Natural Science Foundation of China (U1905215 and 52072076), Fujian Science Foundation Grant (2022J01554), and the Key Project of Science and Technology Innovation of Fujian Provincial Department of Education (2022G02002). We thank Jay Wang for the suggestions in writing.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang B conducted the material preparation and wrote the manuscript. Zhu M, Jiang X, and Shao W conducted the material characterizations. Wang Z, Yan J and Zheng Y participated in the electrochemical tests. Zhuang Z and Yu Y supervised the study. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zanyong Zhuang  (庄赞勇) or Yan Yu  (于岩).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Bixia Yang received her BS degree in materials science and engineering from Fuzhou University, and she is currently working on her PhD degree at Fuzhou University under the supervision of Prof. Zanyong Zhuang and Prof. Yan Yu. Her research focuses on the design of carbonate-based nanomaterial catalysts and the related catalytic topics.

Zanyong Zhuang received his BS degree (2006) in chemistry from Xiamen University and PhD degree (2011) from Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS). Currently, he is working as a full professor at Fuzhou University. His research interests mainly focus on the rational design of transition metal-based catalysts for energy and environmental applications, including advanced oxidation reactions and CO2 reduction reactions.

Yan Yu received her BS, MS, and PhD degrees from Fuzhou University. She was a postdoctoral fellow in 2010–2013 at FJIRSM, CAS. Currently, she is working as a professor at Fuzhou University. Her research interests include the environmental remediation, water purification, ecological materials, photocatalytic CO2 reduction, and H2 production.

Supporting Information

40843_2023_2701_MOESM1_ESM.pdf

Customizing the synergy of reactive oxygen species and photoactive charges on Bi2O2CO3/ZnIn2S4 for the selective photooxidation transformation of 5-hydroxymethylfurfural

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhu, M., Jiang, X. et al. Customizing the synergy of reactive oxygen species and photoactive charges on Bi2O2CO3/ZnIn2S4 for the selective photooxidation transformation of 5-hydroxymethylfurfural. Sci. China Mater. 67, 162–169 (2024). https://doi.org/10.1007/s40843-023-2701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2701-9

Keywords

Navigation