Skip to main content
Log in

Tuning the interlayer spacing in intercalated FeSe-based superconductors through mixed solvent

混合溶剂调控插层FeSe基超导体的层间距

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Recently, the exploration of novel intercalated FeSe-based superconductors through the wet chemical reactions has been a focal point in condensed matter physics. Here, we present the successful synthesis of two FeSe derivatives, namely Li0.34Se0.05(EG)0.14FeSe and Li0.21Se0.05(EG)0.26FeSe, whose c-axis lattice parameters are 9.93 Å and 13.85 Å, respectively, using the solvothermal ion-exchange technique. The interlayer spacing of the two FeSe derivatives can be tuned by the change of mixed solvent during the synthesis process. The resistivity and magnetic susceptibility measurement results show that their superconducting transition temperatures (Tc) are both about 30 K. Interestingly, the Tc values are found to be independent of the interlayer spacing of the FeSe layer. Compared with the pristine FeSe single crystal, X-ray photoelectron spectroscopy results display a decrease of the Fe valence, indicating that the enhancement in Tc may be caused by an electron doping effect. Our research provides valuable insights into the intercalation of FeSe-based superconductors and offers new possibilities for exploring novel intercalated materials within the field of superconductivity.

摘要

近年来, 通过湿化学方法探索合成新型插层FeSe基超导体一直是 凝聚态物理的研究热点之一. 本文中, 我们利用溶剂热离子交换技术成 功合成出两种FeSe衍生物: c轴晶胞参数为9.93 Å的Li0.34 Se0.05 (EG) 0.14 -FeSe和c轴晶胞参数为13.85 Å的Li0.21 Se0.05 (EG)0.26 FeSe. 通过调整反应溶 剂可以调控以上两种FeSe衍生物的层间距. 磁化率和电阻率测试表明 它们的超导转变温度(Tc)均为30 K左右, 似乎与FeSe层层间距的大小无 关. 与原始FeSe单晶相比, X射线光电子能谱结果显示FeSe层Fe的价态 降低, 这表明 Tc 的提高可能是由于电子掺杂效应引起的. 我们的研究为 探索合成插层铁基超导体提供了有价值的参考, 并为在超导领域探索 新型插层材料提供了新的可能性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burrard-Lucas M, Free DG, Sedlmaier SJ, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat Mater, 2013, 12: 15–19

    Article  CAS  Google Scholar 

  2. Jin S, Fan X, Wu X, et al. High-Tc superconducting phases in organic molecular intercalated iron selenides: Synthesis and crystal structures. Chem Commun, 2017, 53: 9729–9732

    Article  CAS  Google Scholar 

  3. Lu XF, Wang NZ, Wu H, et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat Mater, 2015, 14: 325–329

    Article  CAS  Google Scholar 

  4. Rendenbach B, Hohl T, Harm S, et al. Electrochemical synthesis and crystal structure of the organic ion intercalated superconductor (TMA)0.5Fe2Se2 with Tc = 43 K. J Am Chem Soc, 2021, 143: 3043–3048

    Article  CAS  Google Scholar 

  5. Wang J, Li Q, Xie W, et al. Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe*. Chin Phys B, 2021, 30: 107402

    Article  CAS  Google Scholar 

  6. Sun JP, Prashant S, Zhou HX, et al. Effect of high pressure on intercalated FeSe high-Tc superconductors. Acta Phys Sin, 2018, 67: 207404

    Article  Google Scholar 

  7. Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide Kxe2Se2 (0 ⩽ x ⩽ 1.0). Phys Rev B, 2010, 82: 180520

    Article  Google Scholar 

  8. Jin SF, Guo JG, Wang G, et al. Research progress on FeSe-based superconducting materials. Acta Phys Sin, 2018, 67: 207412

    Article  Google Scholar 

  9. Xu HS, Wu S, Zheng H, et al. Research progress of FeSe-based superconductors containing ammonia/organic molecules intercalation. Top Curr Chem, 2022, 380: 11

    Article  CAS  Google Scholar 

  10. Hu GB, Shi MZ, Wang WX, et al. A novel iron-based superconductor synthesized by the ion exchange technique. New J Phys, 2022, 24: 043035

    Article  Google Scholar 

  11. Ying TP, Chen XL, Wang G, et al. Observation of superconductivity at 30–46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci Rep, 2012, 2: 426

    Article  CAS  Google Scholar 

  12. Shi MZ, Wang NZ, Lei B, et al. FeSe-based superconductors with a superconducting transition temperature of 50 K. New J Phys, 2018, 20: 123007

    Article  CAS  Google Scholar 

  13. Gao Z, Zeng S, Zhu B, et al. A FeSe-based superconductor (C2H8N2)xFeSe with only ethylenediamine intercalated. Sci China Mater, 2018, 61: 977–984

    Article  CAS  Google Scholar 

  14. Uemura YJ, Luke GM, Sternlieb BJ, et al. Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys Rev Lett, 1989, 62: 2317–2320

    Article  CAS  Google Scholar 

  15. Uemura YJ, Le LP, Luke GM, et al. Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements. Phys Rev Lett, 1991, 66: 2665–2668

    Article  CAS  Google Scholar 

  16. Homes CC, Dordevic SV, Strongin M, et al. A universal scaling relation in high-temperature superconductors. Nature, 2004, 430: 539–541

    Article  CAS  Google Scholar 

  17. Shermadini Z, Luetkens H, Maisuradze A, et al. Superfluid density and superconducting gaps of RbFe2As2 as a function of hydrostatic pressure. Phys Rev B, 2012, 86: 174516

    Article  Google Scholar 

  18. Deguchi K, Takano Y, Mizuguchi Y. Physics and chemistry of layered chalcogenide superconductors. Sci Tech Adv Mater, 2012, 13: 054303

    Article  CAS  Google Scholar 

  19. Lee CH, Iyo A, Eisaki H, et al. Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1−y (Ln = La, Nd). J Phys Soc Jpn, 2008, 77: 083704

    Article  Google Scholar 

  20. Wen CHP, Xu HC, Chen C, et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nat Commun, 2016, 7: 10840

    Article  CAS  Google Scholar 

  21. Noji T, Hatakeda T, Hosono S, et al. Synthesis and post-annealing effects of alkaline-metal-ethylenediamine-intercalated superconductors Ax(C2H8N2)yFe2−zSe2 (A = Li, Na) with Tc = 45 K. Physica C-Supercondits Appl, 2014, 504: 8–11

    Article  CAS  Google Scholar 

  22. Shi MZ, Wang NZ, Lei B, et al. Organic-ion-intercalated FeSe-based superconductors. Phys Rev Mater, 2018, 2: 074801

    Article  Google Scholar 

  23. Wang NZ, Shi MZ, Shang C, et al. Tunable superconductivity by electrochemical intercalation in TaS2. New J Phys, 2018, 20: 023014

    Article  Google Scholar 

  24. Zhu R, Zhu L, Zhu J, et al. Structure of cetyltrimethylammonium intercalated hydrobiotite. Appl Clay Sci, 2008, 42: 224–231

    Article  CAS  Google Scholar 

  25. Sedlmaier SJ, Cassidy SJ, Morris RG, et al. Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction. J Am Chem Soc, 2014, 136: 630–633

    Article  CAS  Google Scholar 

  26. Eguchi M, Takagi S, Inoue H. The orientation control of dicationic porphyrins on clay surfaces by solvent polarity. Chem Lett, 2006, 35: 14–15

    Article  CAS  Google Scholar 

  27. Hirsemann D, Köster TKJ, Wack J, et al. Covalent grafting to μ-hydroxy-capped surfaces? A kaolinite case study. Chem Mater, 2011, 23: 3152–3158

    Article  CAS  Google Scholar 

  28. Le Bail A. Monte Carlo indexing with McMaille. Powder Diffr, 2004, 19: 249–254

    Article  CAS  Google Scholar 

  29. Fortes AD, Suard E. Crystal structures of ethylene glycol and ethylene glycol monohydrate. J Chem Phys, 2011, 135: 234501

    Article  Google Scholar 

  30. Sun H, Woodruff DN, Cassidy SJ, et al. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li1−xFex(OH)-Fe1−ySe. Inorg Chem, 2015, 54: 1958–1964

    Article  CAS  Google Scholar 

  31. Sritharan S, Jones KA, Motyl KM. The MOCVD growth of ZnSe using Me2Zn, H2Se and SeEt2. J Cryst Growth, 1984, 68: 656–664

    Article  CAS  Google Scholar 

  32. Wang T, Ho S, Chen K, et al. Temperature effect on PI/Cu interface. J Appl Polym Sci, 1993, 47: 1057–1064

    Article  CAS  Google Scholar 

  33. Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys Rev, 1966, 147: 295–302

    Article  CAS  Google Scholar 

  34. Végh J. The Shirley-equivalent electron inelastic scattering cross-section function. Surf Sci, 2004, 563: 183–190

    Article  Google Scholar 

  35. Qi X, Wang JY, Kuo JC, et al. Superconducting property and Fe valence state of FeSe thick films grown from high temperature solution. J Alloys Compd, 2011, 509: 6350–6353

    Article  CAS  Google Scholar 

  36. McIntyre NS, Zetaruk DG. X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem, 1977, 49: 1521–1529

    Article  CAS  Google Scholar 

  37. Lei B, Wang NZ, Shang C, et al. Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Phys Rev B, 2017, 95: 020503

    Article  Google Scholar 

  38. Sakamoto C, Noji T, Sato K, et al. Synthesis of new lithium- and monoamine-intercalated superconductors Lix(CnH2n+3N)y,Fe1−zSe (n = 6, 8, 18) with the dramatically expanded interlayer spacing. J Phys Soc Jpn, 2020, 89: 115002

    Article  Google Scholar 

  39. Hosono S, Noji T, Hatakeda T, et al. New superconducting phase of Lix(C6H16N2)y,Fe2−zSe2 with Tc = 41 K obtained through the post-annealing. J Phys Soc Jpn, 2016, 85: 013702

    Article  Google Scholar 

  40. Hou XJ, Li H, Li S, et al. Theoretical study of the intercalation behavior of ethylene glycol on kaolinite. J Phys Chem C, 2014, 118: 26017–26026

    Article  CAS  Google Scholar 

  41. Smallwood IM. Handbook of Organic Solvent Properties. Amold: London, 1996

    Google Scholar 

  42. Jin Q, Zhang L, Liu M. Solvent-polarity-tuned morphology and inversion of supramolecular chirality in a self-assembled pyridylpyrazole-linked glutamide derivative: Nanofibers, nanotwists, nanotubes, and microtubes. Chem Eur J, 2013, 19: 9234–9241

    Article  CAS  Google Scholar 

  43. Guterding D, Jeschke HO, Hirschfeld PJ, et al. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe. Phys Rev B, 2015, 91: 041112

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12264052) and the Science and Technology Research Project of Jiangxi Provincial Department of Education (GJJ211607).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Hu G conceived and coordinated the project, and is responsible for the infrastructure and project direction. Hu G, Zhong F and Guo J synthesized the samples; Meng F, Chen H and Gao M performed the experiments; Shi M, Meng F, Luo X and Jiang F analyzed the data; Hu G, Shi M and Meng F wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Guobing Hu  (胡国兵).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Guobing Hu obtained his PhD degree in physics from the University of Science and Technology of China (USTC) in 2021. Now he holds the position of lecturer in physics at Yichun University. His current research interest focuses on the exploration and characterization of layered superconductors.

Mengzhu Shi obtained his PhD degree in physics from the USTC in 2021. He is currently a postdoctoral fellow in Professor Xianhui Chen’s research group at the USTC. His current research interest focuses on the exploration and characterization of layered functional materials and layered superconductors.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Shi, M., Meng, F. et al. Tuning the interlayer spacing in intercalated FeSe-based superconductors through mixed solvent. Sci. China Mater. 67, 295–300 (2024). https://doi.org/10.1007/s40843-023-2700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2700-y

Keywords

Navigation