Skip to main content
Log in

Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction

光催化CO2 还原多原子催化剂的设计与制备进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photocatalytic CO2 reduction towards various fuels is of significant interest under the background of mitigating the global warming induced by CO2 emission and lowering the depletion of fossil fuels. However, state-of-the-art photocatalysts still suffer from sluggish reaction dynamics and frustrated product selectivity, especially for C2+ generations, which are of great interest for industrial applications. Over the past decades, comprehensive research on solar-driven CO2 reduction has consistently unveiled some encouraging results in meaningful pathways and architectural design of active sites over photocatalysts. This review highlights the recent advances in boosting photocatalytic CO2 reduction of atomically dispersed catalysts via engineered active sites, including two separated active sites, paired dual-active sites, and nanoclusters based on the configuration of active sites. Both the mechanism of CO2 activation over active sites and advanced characterization methods are discussed in detail. Particularly, in consideration of the wide gap between fundamental research and practical applications, the integrations of experimental and theoretical results are analyzed to realize the underlying structure-activity relationships as well as promising selectivity toward target products. Finally, the remaining challenges in the field are outlined, and inquisitive perspectives with a focus on the rational design of active sites and mechanistic investigation are proposed.

摘要

光催化CO2 还原合成太阳能燃料对缓解CO2 排放引起的全球变 暖和降低化石燃料消耗具有重要意义. 然而, 目前的光催化剂仍然存在 反应动力学缓慢和选择性不理想的问题, 特别是对于C 2+ 产物的生成极大地限制了光催化的工业化进程. 过去几十年中, 关于太阳能驱动的 CO2 还原的研究展示出鼓舞人心的结果, 包括活性位点的构建. 本综述 重点介绍了通过构建活性位点制备原子级分散催化剂在光催化CO2 还 原中的最新进展, 包括两个独立的活性位点、成对双活性位点和基于 活性位点构型的纳米团簇. 此外, 详细讨论了CO2 在活性位点上的活化 机制和表征方法. 特别是考虑到实验研究与实际应用之间的差距, 整合 实验和理论的结果, 以实现潜在的结构-活性关系和高目标产物选择性 发展. 最后, 概述了该领域存在的挑战, 并展望了活性位点的合理设计 和机理研究.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ma Y, Wang X, Jia Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev, 2014, 114: 9987–10043

    Article  CAS  PubMed  Google Scholar 

  2. Quadrelli R, Peterson S. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 2007, 35: 5938–5952

    Article  Google Scholar 

  3. Albero J, Peng Y, Garcia H. Photocatalytic CO2 reduction to C2+ products. ACS Catal, 2020, 10: 5734–5749

    Article  CAS  Google Scholar 

  4. Ulmer U, Dingle T, Duchesne PN, et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat Commun, 2019, 10: 3169

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv Mater, 2018, 30: 1704649

    Article  Google Scholar 

  6. Zhang Y, Xia B, Ran J, et al. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv Energy Mater, 2020, 10: 1903879

    Article  CAS  Google Scholar 

  7. Li D, Kassymova M, Cai X, et al. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev, 2020, 412: 213262

    Article  CAS  Google Scholar 

  8. Montoya JH, Seitz LC, Chakthranont P, et al. Materials for solar fuels and chemicals. Nat Mater, 2017, 16: 70–81

    Article  ADS  Google Scholar 

  9. Chen S, Wang H, Kang Z, et al. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat Commun, 2019, 10: 788

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prabhu P, Jose V, Lee JM. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv Funct Mater, 2020, 30: 1910768

    Article  CAS  Google Scholar 

  11. Xin ZK, Huang MY, Wang Y, et al. Reductive carbon-carbon coupling on metal sites regulates photocatalytic CO2 reduction in water using ZnSe quantum dots. Angew Chem Int Ed, 2022, 61: e202207222

    Article  ADS  CAS  Google Scholar 

  12. Zhao Z, Wang Z, Zhang J, et al. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv Funct Mater, 2023, 33: 2214470

    Article  CAS  Google Scholar 

  13. Guo F, Li RX, Yang S, et al. Designing heteroatom-codoped iron metal-organic framework for promotional photoreduction of carbon dioxide to ethylene. Angew Chem Int Ed, 2023, 62: e202216232

    Article  CAS  Google Scholar 

  14. Liu Z, Ma J, Hong M, et al. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS Catal, 2023, 13: 2106–2117

    Article  CAS  Google Scholar 

  15. Xu Q, Xia Z, Zhang J, et al. Recent advances in solar-driven CO2 reduction over g-C3N4-based photocatalysts. Carbon Energy, 2023, 5: e205

    Article  CAS  Google Scholar 

  16. Wang Z, Shi R, Lu S, et al. Atom manufacturing of photocatalyst towards solar CO2 reduction. Rep Prog Phys, 2022, 85: 026501

    Article  ADS  CAS  Google Scholar 

  17. Ma Y, Wang S, Duan X. Recent advances in direct gas-solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chem Eng J, 2023, 455: 140654

    Article  CAS  Google Scholar 

  18. Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev, 2019, 48: 5310–5349

    Article  CAS  PubMed  Google Scholar 

  19. Birdja YY, Pérez-Gallent E, Figueiredo MC, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4: 732–745

    Article  ADS  CAS  Google Scholar 

  20. Jiang W, Low BQL, Long R, et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS Nano, 2023, 17: 4193–4229

    Article  CAS  PubMed  Google Scholar 

  21. Qiu XF, Zhu HL, Huang JR, et al. Highly selective CO2 electro-reduction to C2H4 using a metal-organic framework with dual active sites. J Am Chem Soc, 2021, 143: 7242–7246

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Shan W, Zachman MJ, et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: Mechanistic insight into active site structures. Angew Chem Int Ed, 2022, 61: e202205632

    Article  CAS  Google Scholar 

  23. Shen M, Zhang L, Shi J. Defect engineering of photocatalysts towards elevated CO2 reduction performance. ChemSusChem, 2021, 14: 2635–2654

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Yang C, Mao L, et al. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Adv Funct Mater, 2023, 33: 2213901

    Article  CAS  Google Scholar 

  25. Wang J, Zhu W, Meng F, et al. Integrating dual-metal sites into covalent organic frameworks for enhanced photocatalytic CO2 reduction. ACS Catal, 2023, 13: 4316–4329

    Article  CAS  Google Scholar 

  26. Wang D, Huang R, Liu W, et al. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal, 2014, 4: 4254–4260

    Article  CAS  Google Scholar 

  27. Liu H, Zhang F, Wang H, et al. Oxygen vacancy engineered unsaturated coordination in cobalt carbonate hydroxide nanowires enables highly selective photocatalytic CO2 reduction. Energy Environ Sci, 2021, 14: 5339–5346

    Article  CAS  Google Scholar 

  28. Lv L, Lu R, Zhu J, et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew Chem Int Ed, 2023, 62: e202303117

    Article  CAS  Google Scholar 

  29. Liu L, Li M, Chen F, et al. Recent advances on single-atom catalysts for CO2 reduction. Small Struct, 2023, 4: 2200188

    Article  CAS  Google Scholar 

  30. Di J, Chen C, Yang SZ, et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat Commun, 2019, 10: 2840

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Wang G, Wu Y, Li Z, et al. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew Chem Int Ed, 2023, 62: e202218460

    Article  CAS  Google Scholar 

  32. Wang L, Wang D, Li Y. Single-atom catalysis for carbon neutrality. Carbon Energy, 2022, 4: 1021–1079

    Article  CAS  Google Scholar 

  33. Ding S, Hülsey MJ, Pérez-Ramírez J, et al. Transforming energy with single-atom catalysts. Joule, 2019, 3: 2897–2929

    Article  CAS  Google Scholar 

  34. Hiragond CB, Powar NS, Lee J, et al. Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: Activity, product selectivity, stability, and surface chemistry. Small, 2022, 18: 2201428

    Article  CAS  Google Scholar 

  35. Yang S, Sa R, Zhong H, et al. Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction. Adv Funct Mater, 2022, 32: 2110694

    Article  CAS  Google Scholar 

  36. Qiao S, Chen Y, Tang Y, et al. Oxygen vacancy-rich Cu2O@Cu with a hydrophobic microenvironment for highly selective C′C coupling to generate C2H4. Chem Eng J, 2023, 454: 140321

    Article  CAS  Google Scholar 

  37. Wagner A, Sahm CD, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal, 2020, 3: 775–786

    Article  CAS  Google Scholar 

  38. Yang J, Jing L, Zhu X, et al. Modulating electronic structure of lattice O-modified orange polymeric carbon nitrogen to promote photocatalytic CO2 conversion. Appl Catal B-Environ, 2023, 320: 122005

    Article  CAS  Google Scholar 

  39. Liu H, Cheng M, Liu Y, et al. Single atoms meet metal-organic frameworks: Collaborative efforts for efficient photocatalysis. Energy Environ Sci, 2022, 15: 3722–3749

    Article  CAS  Google Scholar 

  40. Xia W, Wang F. Molecular catalysts design: Intramolecular supporting site assisting to metal center for efficient CO2 photo- and electroreduction. Mol Catal, 2023, 535: 112884

    Article  CAS  Google Scholar 

  41. Feng X, Zheng R, Gao C, et al. Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide. Nat Commun, 2022, 13: 2146

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu J, Jiang K, Qiu X, et al. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today, 2020, 32: 222–243

    Article  CAS  Google Scholar 

  43. Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? Chem Soc Rev, 2020, 49: 6579–6591

  44. Wu X, Zhang W, Li J, et al. Identification of the active sites on metallic MoO2−x nano-sea-urchin for atmospheric CO2 photoreduction under UV, visible, and near-infrared light illumination. Angew Chem Int Ed, 2023, 62: e202213124

    Article  CAS  Google Scholar 

  45. Sun Z, Talreja N, Tao H, et al. Catalysis of carbon dioxide photo-reduction on nanosheets: Fundamentals and challenges. Angew Chem Int Ed, 2018, 57: 7610–7627

    Article  CAS  Google Scholar 

  46. Gong E, Ali S, Hiragond CB, et al. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci, 2022, 15: 880–937

    Article  CAS  Google Scholar 

  47. Wang Y, Chen E, Tang J. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal, 2022, 12: 7300–7316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y, Wang Z, Huang L, et al. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv Energy Mater, 2021, 11: 2003159

    Article  ADS  CAS  Google Scholar 

  49. Chang X, Wang T, Gong J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci, 2016, 9: 2177–2196

    Article  CAS  Google Scholar 

  50. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed, 2013, 52: 7372–7408

    Article  CAS  Google Scholar 

  51. Sasirekha N, Basha S, Shanthi K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal B-Environ, 2006, 62: 169–180

    Article  CAS  Google Scholar 

  52. Ji Y, Luo Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface. ACS Catal, 2016, 6: 2018–2025

    Article  CAS  Google Scholar 

  53. Dimitrijevic NM, Vijayan BK, Poluektov OG, et al. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc, 2011, 133: 3964–3971

    Article  CAS  PubMed  Google Scholar 

  54. Ji Y, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J Am Chem Soc, 2016, 138: 15896–15902

    Article  CAS  PubMed  Google Scholar 

  55. Vasileff A, Xu C, Jiao Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem, 2018, 4: 1809–1831

    Article  CAS  Google Scholar 

  56. Zheng Y, Vasileff A, Zhou X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc, 2019, 141: 7646–7659

    Article  CAS  PubMed  Google Scholar 

  57. Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal, 2018, 8: 1490–1499

    Article  CAS  Google Scholar 

  58. Zhang H, Li J, Cheng MJ, et al. CO electroreduction: Current development and understanding of Cu-based catalysts. ACS Catal, 2018, 9: 49–65

    Article  Google Scholar 

  59. Gao D, Arán-Ais RM, Jeon HS, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2019, 2: 198–210

    Article  CAS  Google Scholar 

  60. Wang W, Deng C, Xie S, et al. Photocatalytic C′C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper (I)/copper(II). J Am Chem Soc, 2021, 143: 2984–2993

    Article  CAS  PubMed  Google Scholar 

  61. Handoko AD, Chan KW, Yeo BS. −CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett, 2017, 2: 2103–2109

    Article  CAS  Google Scholar 

  62. Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat Catal, 2018, 1: 748–755

    Article  CAS  Google Scholar 

  63. Fan Q, Zhang M, Jia M, et al. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy, 2018, 10: 280–301

    Article  Google Scholar 

  64. Hanselman S, Koper MTM, Calle-Vallejo F. Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species. ACS Energy Lett, 2018, 3: 1062–1067

    Article  CAS  Google Scholar 

  65. Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc, 2022, 144: 17097–17109

    Article  CAS  PubMed  Google Scholar 

  66. Wang F, Fang R, Zhao X, et al. Ultrathin nanosheet assembled multishelled superstructures for photocatalytic CO2 reduction. ACS Nano, 2022, 16: 4517–4527

    Article  CAS  PubMed  Google Scholar 

  67. Xue ZH, Luan D, Zhang H, et al. Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6: 92–133

    Article  CAS  Google Scholar 

  68. Wang ZL, Sun K, Henzie J, et al. Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angew Chem Int Ed, 2018, 57: 5848–5852

    Article  CAS  Google Scholar 

  69. Li H, Wen Y, Jiang M, et al. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv Funct Mater, 2021, 31: 2011289

    Article  CAS  Google Scholar 

  70. van Oversteeg CHM, Doan HQ, de Groot FMF, et al. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem Soc Rev, 2017, 46: 102–125

    Article  CAS  PubMed  Google Scholar 

  71. Chen S, Kong P, Niu H, et al. Co-porphyrin/Ru-pincer complex coupled polymer with Z-scheme molecular junctions and dual single-atom sites for visible light-responsive CO2 reduction. Chem Eng J, 2022, 431: 133357

    Article  CAS  Google Scholar 

  72. Zeng L, Chen JW, Zhong L, et al. Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane. Appl Catal B-Environ, 2022, 307: 121154

    Article  CAS  Google Scholar 

  73. Ou H, Ning S, Zhu P, et al. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem Int Ed, 2022, 61: e202206579

    Article  CAS  Google Scholar 

  74. Wang G, Chen Z, Wang T, et al. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew Chem Int Ed, 2022, 61: e202210789

    Article  CAS  Google Scholar 

  75. He Y, Chen C, Liu Y, et al. Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction. Nano Lett, 2022, 22: 4970–4978

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Wang Z, Hu X, Liu Z, et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal, 2019, 9: 10260–10278

    Article  CAS  Google Scholar 

  77. Lu Y, Yang Y, Fan X, et al. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv Mater, 2022, 34: 2108178

    Article  CAS  Google Scholar 

  78. Wan S, Dong C, Jin J, et al. Tuning the surface wettability of a BiVO4 photoanode for kinetically modulating water oxidative H2O2 accumulation. ACS Energy Lett, 2022, 7: 3024–3031

    Article  CAS  Google Scholar 

  79. Hao L, Huang H, Zhang Y, et al. Oxygen vacant semiconductor photocatalysts. Adv Funct Mater, 2021, 31: 2100919

    Article  CAS  Google Scholar 

  80. Jin B, Cho Y, Zhang Y, et al. A “surface patching” strategy to achieve highly efficient solar water oxidation beyond surface passivation effect. Nano Energy, 2019, 66: 104110

    Article  CAS  Google Scholar 

  81. Xu QJ, Jiang JW, Wang XF, et al. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met, 2023, 42: 1888–1898

    Article  CAS  Google Scholar 

  82. Ni M, Zhu Y, Guo C, et al. Efficient visible-light-driven CO2 methanation with self-regenerated oxygen vacancies in Co3O4/NiCo2O4 hetero-nanocages: Vacancy-mediated selective photocatalysis. ACS Catal, 2023, 13: 2502–2512

    Article  Google Scholar 

  83. Li J, Pan W, Liu Q, et al. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J Am Chem Soc, 2021, 143: 6551–6559

    Article  CAS  PubMed  Google Scholar 

  84. Li M, Zhang Y, Li X, et al. Nature-derived approach to oxygen and chlorine dual-vacancies for efficient photocatalysis and photoelectrochemistry. ACS Sustain Chem Eng, 2018, 6: 2395–2406

    Article  CAS  Google Scholar 

  85. Wang P, Fan S, Li X, et al. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy, 2022, 95: 107045

    Article  CAS  Google Scholar 

  86. Feng Y, Wang C, Cui P, et al. Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv Mater, 2022, 34: 2109074

    Article  CAS  Google Scholar 

  87. Shi X, Dai C, Wang X, et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat Commun, 2022, 13: 1287

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang B, Cai H, Shen S. Single metal atom photocatalysis. Small Methods, 2019, 3: 1800447

    Article  Google Scholar 

  89. Cao Y, Guo L, Dan M, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat Commun, 2021, 12: 1675

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang J, Yang H, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv Energy Mater, 2021, 11: 2002473

    Article  CAS  Google Scholar 

  91. Shan J, Ye C, Jiang Y, et al. Metal-metal interactions in correlated single-atom catalysts. Sci Adv, 2022, 8: eabo0762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou P, Chao Y, Lv F, et al. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci Bull, 2020, 65: 720–725

    Article  CAS  Google Scholar 

  93. Cai S, Wang L, Heng S, et al. Interaction of single-atom platinum-oxygen vacancy defects for the boosted photosplitting water H2 evolution and CO2 photoreduction: Experimental and theoretical study. J Phys Chem C, 2020, 124: 24566–24579

    Article  CAS  Google Scholar 

  94. Xiong X, Mao C, Yang Z, et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv Energy Mater, 2020, 10: 2002928

    Article  CAS  Google Scholar 

  95. Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119: 3962–4179

    Article  CAS  PubMed  Google Scholar 

  96. Xu S, Carter EA. Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chem Rev, 2018, 119: 6631–6669

    Article  PubMed  Google Scholar 

  97. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119: 7610–7672

    Article  CAS  PubMed  Google Scholar 

  98. Zhang S, Yi X, Hu G, et al. Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coord Chem Rev, 2023, 478: 214970

    Article  CAS  Google Scholar 

  99. Wang Z, Jin B, Peng J, et al. Engineered polymeric carbon nitride additive for energy storage materials: A review. Adv Funct Mater, 2021, 31: 2102300

    Article  CAS  Google Scholar 

  100. Wang Z, Jin B, Zou G, et al. Rationally designed copper-modified polymeric carbon nitride as a photocathode for solar water splitting. ChemSusChem, 2019, 12: 866–872

    Article  CAS  PubMed  Google Scholar 

  101. Xie W, Li K, Liu XH, et al. P-mediated Cu-N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation. Adv Mater, 2023, 35: 2208132

    Article  CAS  Google Scholar 

  102. Kuriki R, Matsunaga H, Nakashima T, et al. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J Am Chem Soc, 2016, 138: 5159–5170

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Kim E, Kumar DP, et al. Highly durable and fully dispersed cobalt diatomic site catalysts for CO2 photoreduction to CH4. Angew Chem Int Ed, 2022, 61: e202113044

    Article  CAS  Google Scholar 

  104. Zhu S, Li X, Jiao X, et al. Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites. Nano Lett, 2021, 21: 2324–2331

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Wun CKT, Mok HK, Chen T, et al. Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catal, 2022, 2: 2346–2363

    Article  CAS  Google Scholar 

  106. Liang X, Fu N, Yao S, et al. The progress and outlook of metal single-atom-site catalysis. J Am Chem Soc, 2022, 144: 18155–18174

    Article  CAS  PubMed  Google Scholar 

  107. Gu J, Xu Y, Lu J. Atom-precise low-nuclearity cluster catalysis: Opportunities and challenges. ACS Catal, 2023, 13: 5609–5634

    Article  CAS  Google Scholar 

  108. Cheng L, Yue X, Wang L, et al. Dual-single-atom tailoring with bi-functional integration for high-performance CO2 photoreduction. Adv Mater, 2021, 33: 2105135

    Article  CAS  Google Scholar 

  109. Cheng L, Zhang P, Wen Q, et al. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin J Catal, 2022, 43: 451–460

    Article  CAS  Google Scholar 

  110. Jia G, Sun M, Wang Y, et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv Funct Mater, 2022, 32: 2206817

    Article  CAS  Google Scholar 

  111. Han GH, Bang J, Park G, et al. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small, 2023, 19: 2205765

    Article  CAS  Google Scholar 

  112. Zeng L, Cao Y, Li Z, et al. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene. ACS Catal, 2021, 11: 11696–11705

    Article  CAS  Google Scholar 

  113. Shi H, Wang H, Zhou Y, et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO2 photoreduction to ethanol. Angew Chem Int Ed, 2022, 61: e202208904

    Article  ADS  CAS  Google Scholar 

  114. Shi H, Li J, Wang H, et al. Chlorine tailored p-d blocks dual-metal atomic catalyst for efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2023, 322: 122139

    Article  CAS  Google Scholar 

  115. Lee BH, Gong E, Kim M, et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. Energy Environ Sci, 2022, 15: 601–609

    Article  CAS  Google Scholar 

  116. Ghuman KK, Hoch LB, Szymanski P, et al. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J Am Chem Soc, 2016, 138: 1206–1214

    Article  CAS  PubMed  Google Scholar 

  117. Wang Q, Miao Z, Zhang Y, et al. Photocatalytic reduction of CO2 with H2O mediated by Ce-tailored bismuth oxybromide surface frustrated Lewis pairs. ACS Catal, 2022, 12: 4016–4025

    Article  CAS  Google Scholar 

  118. Liang X, Wang X, Zhang X, et al. Frustrated Lewis pairs on In(OH)3−x facilitate photocatalytic CO2 reduction. ACS Catal, 2023, 13: 6214–6221

    Article  CAS  Google Scholar 

  119. Li Z, Mao C, Pei Q, et al. Engineered disorder in CO2 photocatalysis. Nat Commun, 2022, 13: 7205

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stephan DW. Frustrated Lewis pairs: From concept to catalysis. Acc Chem Res, 2015, 48: 306–316

    Article  CAS  PubMed  Google Scholar 

  121. Das S, Turnell-Ritson RC, Dyson PJ, et al. Design of frustrated Lewis pair catalysts for direct hydrogenation of CO2. Angew Chem Int Ed, 2022, 61: e202208987

    Article  CAS  Google Scholar 

  122. Salusso D, Grillo G, Manzoli M, et al. CeO2 frustrated Lewis pairs improving CO2 and CH3OH conversion to monomethylcarbonate. ACS Appl Mater Interfaces, 2023, 15: 15396–15408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hoch LB, Wood TE, O’Brien PG, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci, 2014, 1: 1400013

    Article  Google Scholar 

  124. Dong Y, Ghuman KK, Popescu R, et al. Tailoring surface frustrated Lewis pairs of In2O3−x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+. Adv Sci, 2018, 5: 1700732

    Article  Google Scholar 

  125. Yan T, Li N, Wang L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat Commun, 2020, 11: 6095

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sheng J, He Y, Huang M, et al. Frustrated Lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots. ACS Catal, 2022, 12: 2915–2926

    Article  CAS  Google Scholar 

  127. Yang D, Wang J, Wang Q, et al. Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS Nano, 2022, 16: 15681–15704

    Article  CAS  PubMed  Google Scholar 

  128. Cai X, Li G, Hu W, et al. Catalytic conversion of CO2 over atomically precise gold-based cluster catalysts. ACS Catal, 2022, 12: 10638–10653

    Article  CAS  Google Scholar 

  129. Pelicano CM, Saruyama M, Takahata R, et al. Bimetallic synergy in ultrafine cocatalyst alloy nanoparticles for efficient photocatalytic water splitting. Adv Funct Mater, 2022, 32: 2202987

    Article  CAS  Google Scholar 

  130. Wan XK, Wang JQ, Wang QM. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew Chem Int Ed, 2021, 60: 20748–20753

    Article  CAS  Google Scholar 

  131. Gao ZH, Wei K, Wu T, et al. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2022, 144: 5258–5262

    Article  CAS  PubMed  Google Scholar 

  132. Kulkarni VK, Khiarak BN, Takano S, et al. N-heterocyclic carbenestabilized hydrido Au24 nanoclusters: Synthesis, structure, and electrocatalytic reduction of CO2. J Am Chem Soc, 2022, 144: 9000–9006

    Article  CAS  PubMed  Google Scholar 

  133. Li Y, Yang YL, Chen G, et al. Au cluster anchored on TiOv/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met, 2022, 41: 3045–3059

    Article  CAS  Google Scholar 

  134. Dass A, Theivendran S, Nimmala PR, et al. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J Am Chem Soc, 2015, 137: 4610–4613

    Article  CAS  PubMed  Google Scholar 

  135. Zeng C, Chen Y, Iida K, et al. Gold quantum boxes: On the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J Am Chem Soc, 2016, 138: 3950–3953

    Article  CAS  PubMed  Google Scholar 

  136. Lv F, Han N, Qiu Y, et al. Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coord Chem Rev, 2020, 422: 213435

    Article  CAS  Google Scholar 

  137. Zeng C, Qian H, Li T, et al. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed, 2012, 51: 13114–13118

    Article  CAS  Google Scholar 

  138. Yin G, Nishikawa M, Nosaka Y, et al. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano, 2015, 9: 2111–2119

    Article  CAS  PubMed  Google Scholar 

  139. Cui X, Wang J, Liu B, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J Am Chem Soc, 2018, 140: 16514–16520

    Article  CAS  PubMed  Google Scholar 

  140. Jiang Y, Yu Y, Zhang X, et al. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew Chem Int Ed, 2021, 60: 17388–17393

    Article  CAS  Google Scholar 

  141. Dai S, Kajiwara T, Ikeda M, et al. Ultrasmall copper nanoclusters in zirconium metal-organic frameworks for the photoreduction of CO2. Angew Chem Int Ed, 2022, 61: e202211848

    Article  ADS  CAS  Google Scholar 

  142. Wang H, Wang F, Li X, et al. In-situ formation of electron-deficient Pd sites on AuPd alloy nanoparticles under irradiation enabled efficient photocatalytic Heck reaction. Chin J Catal, 2023, 46: 72–83

    Article  CAS  Google Scholar 

  143. Zhang H, Liu L, Zhou Z. Towards better photocatalysts: First-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys Chem Chem Phys, 2012, 14: 1286–1292

    Article  CAS  PubMed  Google Scholar 

  144. Wang F, Jiang Y, Lawes DJ, et al. Analysis of the promoted activity and molecular mechanism of hydrogen production over fine Au-Pt alloyed TiO2 photocatalysts. ACS Catal, 2015, 5: 3924–3931

    Article  CAS  Google Scholar 

  145. Lee S, Jeong S, Kim WD, et al. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale, 2016, 8: 10043–10048

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Cheng Y, Chen J, Yang C, et al. Activation of transition metal (Fe, Co and Ni)-oxide nanoclusters by nitrogen defects in carbon nanotube for selective CO2 reduction reaction. Energy & Environ Mater, 2023, 6: e12278

    Article  CAS  Google Scholar 

  147. Li J, Hu J, Shi Y, et al. The reaction mechanism of highly dispersed Cu atoms and ultrafine MnO, nanoclusters co-modified ZSM-5 based on in-situ heteronuclear substitution for catalytic oxidation C6H14. Chem Eng J, 2023, 451: 138721

    Article  CAS  Google Scholar 

  148. Sartorel A, Carraro M, Toma FM, et al. Shaping the beating heart of artificial photosynthesis: Oxygenic metal oxide nano-clusters. Energy Environ Sci, 2012, 5: 5592–5603

    Article  CAS  Google Scholar 

  149. Shoji S, Yin G, Nishikawa M, et al. Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod thin film. Chem Phys Lett, 2016, 658: 309–314

    Article  ADS  CAS  Google Scholar 

  150. Yao S, Sun BQ, Zhang P, et al. Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Appl Catal B-Environ, 2022, 317: 121702

    Article  CAS  Google Scholar 

  151. Jiao J, Yuan Q, Tan M, et al. Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction. Nat Commun, 2023, 14: 6164

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (22172077 and T2322013), the Scientific Research Foundation of Chemistry and Chemical Engineering Guangdong Laboratory (2011001). Park JH acknowledges the support by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A1058624 and 2019R1A2C3010479).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang Z wrote the paper; Zou G prepared some figures and tables; Park JH revised the manuscript; Zhang K offered the overall concept and revised the manuscript.

Corresponding authors

Correspondence to Jong Hyeok Park or Kan Zhang  (张侃).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Zhonghao Wang received his PhD degree in 2017 in physics chemistry from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. He is currently a post-doctoral fellow at Yousei University (under Prof. Jong Hyeok Park and Prof. Kan Zhang). His research interests focus on the synthesis and characterization of polymeric carbon nitride-based nanomaterials for photocatalytic energy conversion.

Jong Hyeok Park is a professor at the Department of Chemical and Biomolecular Engineering, Yonsei University, Republic of Korea. He received his PhD degree in chemical engineering from Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea, in August 2004. Then, he joined the University of Texas at Austin, USA, as a postdoctoral researcher in 2004 (under Prof. Allen J. Bard). His research focuses on solar-to-hydrogen conversion devices, Li- and Na-ion batteries, and perovskite solar cells.

Kan Zhang is currently a professor at the School of Materials Science and Technology, Nanjing University of Science and Technology, China. He obtained his PhD degree from Sungkyunkwan University, Republic of Korea, in 2015. Then, he moved to Yonsei University as a research professor until 2018. His research interests involve photoelectrochemical- and electrocatalysis-related energy conversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zou, G., Park, J.H. et al. Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction. Sci. China Mater. 67, 397–423 (2024). https://doi.org/10.1007/s40843-023-2698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2698-5

Keywords

Navigation