Skip to main content
Log in

Tunable rectification and magnetoresistance behaviors of ferromagnetic pn diode based on (Fe, Al)-doped SiGe with enhanced room-temperature magnetization

基于室温铁磁性的(Fe, Al)共掺杂SiGe铁磁pn二极管 的可调整流和磁阻特性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Group-IV diluted magnetic semiconductors (DMSs) have attracted rising attention owing to their exceptional magnetic and electrical properties and promising potential for application in spintronic devices compatible with current mainstream semiconductor integration technology. Indeed, group-IV DMSs with room-temperature ferromagnetism (RTFM) and devices derived from them are more expected for practical applications. In this work, p-type (Fe, Al)-doped SiGe thin films and pn diodes based on the p-type SiGe films and n-type Ge substrates are designed and fabricated. Magnetization characterizations, as well as magnetoresistance (MR) and anomalous Hall effect measurements, reveal RTFM in the p-type (Fe, Al)-doped SiGe thin films, in which the hole-mediated spontaneous magnetization primarily originating from Fe dopants is enhanced by holes provided by Al dopants. Interestingly, the ferromagnetic pn heterostructure exhibits magnetic field-tunable rectification and MR behaviors, especially at low temperatures, owing to the Zeeman splitting difference in the ferromagnetic p-SiGe and nonmagnetic n-Ge layers under applied magnetic fields. Our results provide an alternative strategy for fabricating group-IV DMSs with RTFM and a paradigm for practical spintronic application of group-IV DMSs.

摘要

IV族稀磁半导体因其优异的磁电性能, 以及在与当前主流半导 体集成技术兼容的自旋电子器件中具有广阔的应用前景而受到越来越 多的关注. 事实上, 具有室温铁磁性的IV族稀磁半导体及其衍生器件更 有望在实际中得以应用. 本工作设计并制备了基于p型(Fe, Al)共掺杂 SiGe薄膜和n型Ge衬底的磁性pn二极管. 磁性测量以及磁阻和反常霍 尔效应测试揭示了p型(Fe, Al)共掺杂SiGe薄膜的室温铁磁性. 有趣的 是, 磁性pn异质结表现出磁场可调的整流和磁阻行为. 我们的研究结 果为制备具有室温铁磁性的IV族稀磁半导体提供了一种可选策略, 并 为IV族稀磁半导体的实际自旋电子应用提供了范例.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86: 187–251

    Article  CAS  ADS  Google Scholar 

  2. Dietl T, Bonanni A, Ohno H. Families of magnetic semiconductors—An overview. J Semicond, 2019, 40: 080301

    Article  CAS  Google Scholar 

  3. Yakout SM. Spintronics: Future technology for new data storage and communication devices. J Supercond Nov Magn, 2020, 33: 2557–2580

    Article  CAS  Google Scholar 

  4. Hirohata A, Yamada K, Nakatani Y, et al. Review on spintronics: Principles and device applications. J Magn Magn Mater, 2020, 509: 166711

    Article  CAS  Google Scholar 

  5. Tanaka M. Recent progress in ferromagnetic semiconductors and spintronics devices. Jpn J Appl Phys, 2021, 60: 010101

    Article  CAS  ADS  Google Scholar 

  6. Zhu W, Lin H, Yan F, et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv Mater, 2021, 33: 2104658

    Article  CAS  Google Scholar 

  7. Zhu W, Xie S, Lin H, et al. Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Chin Phys Lett, 2022, 39: 128501

    Article  ADS  Google Scholar 

  8. Saito H, Zayets V, Yamagata S, et al. Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1−xCrxTe. Phys Rev Lett, 2003, 90: 207202

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11: 2584–2589

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Park YD, Hanbicki AT, Erwin SC, et al. A group-IV ferromagnetic semiconductor: MnxGe1-x. Science, 2002, 295: 651–654

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Wang H, Sun S, Lu J, et al. High Curie temperature ferromagnetism and high hole mobility in tensile strained Mn-doped SiGe thin films. Adv Funct Mater, 2020, 30: 2002513

    Article  CAS  Google Scholar 

  12. Shen L, Zhang X, Wang J, et al. Mn-doped SiGe thin films grown by UHV/CVD with room-temperature ferromagnetism and high hole mobility. Sci China Mater, 2022, 65: 2826–2832

    Article  CAS  Google Scholar 

  13. Coey JMD, Venkatesan M, Fitzgerald CB. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4: 173–179

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Deng Z, Jin CQ, Liu QQ, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2: 422

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Zhao K, Deng Z, Wang XC, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors. Nat Commun, 2013, 4: 1442

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Dong J, Zhao X, Fu L, et al. (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2. J Semicond, 2022, 43: 072501

    Article  Google Scholar 

  17. Zhao X, Dong J, Fu L, et al. (Ba1−xNax)F(Zn1−xMnx)Sb: a novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. J Semicond, 2022, 43: 112501

    Article  Google Scholar 

  18. Yu S, Peng Y, Zhao G, et al. Colossal negative magnetoresistance in spin glass Na(Zn,Mn)Sb. J Semicond, 2023, 44: 032501

    Article  Google Scholar 

  19. Li J, Zhang X, Lu J, et al. Synthesis and high-temperature ferromagnetism of Fe-doped SiGe diluted magnetic semiconductor thin films. Nanoscale, 2023, 15: 2206–2213

    Article  PubMed  Google Scholar 

  20. Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287: 1019–1022

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Wang H, Sun S, Xu J, et al. Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims. Chin Phys B, 2020, 29: 057504

    Article  CAS  ADS  Google Scholar 

  22. Khazen K, von Bardeleben HJ, Cantin JL, et al. Ferromagnetic resonance of Ga0.93Mn0.07As thin films with constant Mn and variable free-hole concentrations. Phys Rev B, 2008, 77: 165204

    Article  ADS  Google Scholar 

  23. Xiu F, Wang Y, Kou X, et al. Synthesis of high-Curie-temperature Fe0.02Ge0.98 quantum dots. J Am Chem Soc, 2010, 132: 11425–11427

    Article  CAS  PubMed  Google Scholar 

  24. Tsui F, He L, Ma L, et al. Novel germanium-based magnetic semiconductors Phys Rev Lett, 2003, 91: 177203

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Tsui F, He L, Tkachuk A, et al. Evidence for strain compensation in stabilizing epitaxial growth of highly doped germanium Phys Rev B, 2004, 69: 081304

    Article  ADS  Google Scholar 

  26. Collins BA, Chu YS, He L, et al. Dopant stability and strain states in Co and Mn-doped Ge (001) epitaxial films. Phys Rev B, 2008, 77: 193301

    Article  ADS  Google Scholar 

  27. Gareev RR, Bugoslavsky YV, Schreiber R, et al. Carrier-induced ferromagnetism in Ge(Mn,Fe) magnetic semiconductor thin-film structures. Appl Phys Lett, 2006, 88: 222508

    Article  ADS  Google Scholar 

  28. Paul A, Sanyal B. Chemical and magnetic interactions in Mn- and Fe- codoped Ge diluted magnetic semiconductors. Phys Rev B, 2009, 79: 214438

    Article  ADS  Google Scholar 

  29. Xiu F, Wang Y, Kim J, et al. Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots. Nat Mater, 2010, 9: 337–344

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Kempter CP. Vegard’s “law”. Physica Status Solidi (b), 1966, 18: K117–K118

    Article  CAS  ADS  Google Scholar 

  31. Mi WB, Li P, Jiang EY, et al. Structure, magnetic and electrical transport properties of cosputtered Fe0.5Ge0.5 nanocomposite films. Appl Surf Sci, 2010, 256: 2831–2836

    Article  CAS  ADS  Google Scholar 

  32. Wakabayashi YK, Sakamoto S, Takeda YH, et al. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1−xFex. Sci Rep, 2016, 6: 23295

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69: 363–365

    Article  CAS  ADS  Google Scholar 

  34. Arushanov E, Kloc C, Hohl H, et al. The Hall effect in β-FeSi2 single crystals. J Appl Phys, 1994, 75: 5106–5109

    Article  ADS  Google Scholar 

  35. Yasukōchi K, Kanematsu K, Ohoyama T. Magnetic properties of in-termetallic compounds in iron-germanium system: Fe1.67Ge and FeGe2. J Phys Soc Jpn, 1961, 16: 429–433

    Article  ADS  Google Scholar 

  36. Schulthess TC, Butler WH. Electronic structure and magnetic interactions in Mn doped semiconductors. J Appl Phys, 2001, 89: 7021–7023

    Article  CAS  ADS  Google Scholar 

  37. Kaminski A, Das Sarma S. Polaron percolation in diluted magnetic semiconductors. Phys Rev Lett, 2002, 88: 247202

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Nie T, Tang J, Kou X, et al. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1−x nanomesh. Nat Commun, 2016, 7: 12866

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Mihály G, Csontos M, Bordács S, et al. Anomalous Hall effect in the (In,Mn)Sb dilute magnetic semiconductor. Phys Rev Lett, 2008, 100: 107201

    Article  PubMed  ADS  Google Scholar 

  40. Stroppa A, Picozzi S, Continenza A, et al. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors. Phys Rev B, 2003, 68: 155203

    Article  ADS  Google Scholar 

  41. Majumdar S, Das AK, Ray SK. Magnetic semiconducting diode of p-Ge1−xMnx/n-Ge layers on silicon substrate. Appl Phys Lett, 2009, 94: 122505

    Article  ADS  Google Scholar 

  42. Tian YF, Deng JX, Yan SS, et al. Tunable rectification and giant positive magnetoresistance in Ge1−xMnx/Ge epitaxial heterojunction diodes. J Appl Phys, 2010, 107: 024514

    Article  ADS  Google Scholar 

  43. Ando K. Seeking room-temperature ferromagnetic semiconductors. Science, 2006, 312: 1883–1885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1405100) and the National Natural Science Foundation of China (52172272). We thank the Analytical & Testing Center of Sichuan University for the SEM, XRD, and XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li J fabricated the samples and performed the experiments; Zhang X provided the resources and supervised the project; Xiang G designed and supervised the project and provided resources. Li J, Zhang X and Xiang G wrote the paper. All authors contributed to general discussion.

Corresponding author

Correspondence to Gang Xiang  (向钢).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jiafei Li is a PhD student of Sichuan University under the supervision of Prof. Gang Xiang. His current research interests focus on the preparation, structural and magnetic properties of group-IV DMSs, and the fabrication and properties of their spintronic devices.

Gang Xiang earned his PhD degree in condensed matter physics from Pennsylvania State University-University Park in 2006. Then he worked at Pennsylvania State University-University Park (2006–2007) and also at Ohio State University-Columbus (2007–2010) as a postdoctoral researcher. He joined Sichuan University in 2010. His research interests include the design and fabrication of magnetic materials including diluted magnetic semiconductors and transition metal chalcogenides, and their spintronic and electronic applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, X. & Xiang, G. Tunable rectification and magnetoresistance behaviors of ferromagnetic pn diode based on (Fe, Al)-doped SiGe with enhanced room-temperature magnetization. Sci. China Mater. 67, 573–579 (2024). https://doi.org/10.1007/s40843-023-2697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2697-x

Keywords

Navigation