Skip to main content
Log in

Screening metal diffusion barriers for thermoelectric Bi0.5Sb1.5Te3

热电Bi0.5Sb1.5Te3中扩散屏蔽层材料的筛选

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As the only commercialized thermoelectric for low-grade waste heat recovery applications, Bi2Te3-based devices commonly use nickel as the electrode. The long-term chemical stability of the Bi2Te3/Ni junction, particularly for the hot side, is one of the major concerns for Bi2Te3-based and other thermoelectrics because of the formation of Ni-Te intermediate compounds. The utilization of diffusion barrier layers has been proven to be an effective solution and the barriers should have both a good chemical inertness and a slow diffusion. In this work, Ti was screened out from 13 metals in total as an effective barrier material between p-type Bi0.5Sb1.5-Te3 thermoelectric materials and Ni electrodes, because of its low diffusion coefficient and long-term interfacial stability. The fabricated p-type Bi0.5Sb1.5Te3/Ti/Ni single-leg devices show a conversion efficiency over 6%, at a temperature difference of 200 K, without observable degradation for 1860 cycles of measurements lasting for 10 days. This study offers a useful strategy for making efficient and durable thermoelectric devices.

摘要

Bi2Te3基热电发电器件作为低品位余热回收应用中唯一商业化 的热电器件, 通常使用镍作为电极. Bi2Te3/Ni的界面处常形成镍碲化合 物, Bi2Te3基热电器件以及其他热电器件长期服役的稳定性主要取决于 热电材料与电极界面处的长期稳定性(尤其是热端), 热电材料与电极之 间引入扩散屏蔽层在热电器件的转换效率和服役稳定性方面发挥着重 要作用. 本工作从13种金属中筛选出Ti作为p型Bi0.5Sb1.5Te3热电材料与 Ni电极之间的阻挡层材料. 由于Ti在Bi0.5Sb1.5Te3中具有低扩散系数和 长期界面稳定性, p型Bi0.5Sb1.5Te3/Ti/Ni单腿器件在200 K温差下转换效 率大于6%, 并且在持续10天的近1900次转换效率测试中未发生衰减. 这 为制备高效耐用的热电器件提供了一种实用的策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461

    Article  CAS  Google Scholar 

  2. DiSalvo FJ. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706

    Article  CAS  Google Scholar 

  3. Rowe DM. General principles and basic considerations. In: Rowe DM (ed.). Thermoelectric Handbook. Boca Raton: CRC Press, 2006

    Google Scholar 

  4. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater, 2008, 7: 105–114

    Article  CAS  Google Scholar 

  5. Witting IT, Chasapis TC, Ricci F, et al. The thermoelectric properties of bismuth telluride. Adv Elect Mater, 2019, 5: 1800904

    Article  Google Scholar 

  6. Scherrer H, Scherrer S. Thermoelectric properties of bismuth antimony telluride solid solutions. In: Rowe DM (ed.). Thermoelectric Handbook. Boca Raton: CRC Press, 2006

    Google Scholar 

  7. Yim WM, Rosi FD. Compound tellurides and their alloys for Peltier cooling—A review. Solid-State Electron, 1972, 15: 1121–1140

    Article  CAS  Google Scholar 

  8. Kim SI, Lee KH, Mun HA, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348: 109–114

    Article  CAS  Google Scholar 

  9. Goldsmid HJ. Introduction to Thermoelectricity. Heidelberg: Springer, 2009

    Google Scholar 

  10. Snyder GJ. Thermoelectric Power Generation: Efficiency and Compatibility. Boca Raton: CRC Taylor & Francis Group, 2006

    Google Scholar 

  11. Kraemer D, Jie Q, McEnaney K, et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat Energy, 2016, 1: 16153

    Article  CAS  Google Scholar 

  12. Le W, Yang W, Sheng W, et al. Research progress of interfacial design between thermoelectric materials and electrode materials. ACS Appl Mater Interfaces, 2023, 15: 12611–12621

    Article  CAS  Google Scholar 

  13. Liu W, Jie Q, Kim HS, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater, 2015, 87: 357–376

    Article  CAS  Google Scholar 

  14. Qiu P, Mao T, Huang Z, et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule, 2019, 3: 1538–1548

    Article  CAS  Google Scholar 

  15. Wu W, Ren GK, Chen X, et al. Interfacial advances yielding high efficiencies for thermoelectric devices. J Mater Chem A, 2021, 9: 3209–3230

    Article  CAS  Google Scholar 

  16. Xing T, Song Q, Qiu P, et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ Sci, 2021, 14: 995–1003

    Article  CAS  Google Scholar 

  17. Zhu W, Wei P, Zhang J, et al. Fabrication and excellent performances of bismuth telluride-based thermoelectric devices. ACS Appl Mater Interfaces, 2022, 14: 12276–12283

    Article  CAS  Google Scholar 

  18. Liu W, Wang H, Wang L, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J Mater Chem A, 2013, 1: 13093–13100

    Article  CAS  Google Scholar 

  19. Zhou H, Mu X, Zhao W, et al. Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy, 2017, 40: 274–281

    Article  CAS  Google Scholar 

  20. Lin WP, Wesolowski DE, Lee CC. Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules. J Mater Sci-Mater Electron, 2011, 22: 1313–1320

    Article  CAS  Google Scholar 

  21. Xiong K, Wang W, Alshareef HN, et al. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces. J Phys D-Appl Phys, 2010, 43: 115303

    Article  Google Scholar 

  22. Wang CH, Hsieh HC, Lee HY, et al. Co-P diffusion barrier for p-Bi2Te3 thermoelectric material. J Elec Materi, 2019, 48: 53–57

    Article  Google Scholar 

  23. Chien PY, Yeh CH, Hsu HH, et al. Polarity effect in a Sn3Ag0.5Cu/bismuth telluride thermoelectric system. J Elec Materi, 2014, 43: 284–289

    Article  CAS  Google Scholar 

  24. Ko CY, Wu AT. Evaluation of diffusion barrier between pure Sn and Te. J Elec Materi, 2012, 41: 3320–3324

    Article  CAS  Google Scholar 

  25. Bronsema KD, Bus GW, Wiegers GA. The crystal structure of vanadium ditelluride, V1+xTe2. J Solid State Chem, 1984, 53: 415–421

    Article  CAS  Google Scholar 

  26. Furuseth S, Fjellvåg H, Johansson LG, et al. Re-examination of the crystal structure of ZrTe3.. Acta Chem Scand, 1991, 45: 694–697

    Article  CAS  Google Scholar 

  27. Muhler M, Bensch W, Schur M. Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range. J Phys-Condens Matter, 1998, 10: 2947–2962

    Article  CAS  Google Scholar 

  28. Ipser H, Komarek KL, Klepp KO. Transition metal-chalcogen systems VIII: The Cr-Te phase diagram. J Less Common Met, 1983, 92: 265–282

    Article  CAS  Google Scholar 

  29. Abrikosov NK, Petrova LI. The polythermal cross section FeSb2-FeTe2 of the Fe-Sb-Te system. Inorg Mater, 1989, 25: 1087–1090

    Google Scholar 

  30. Vaško A, Tichý L, Horák J, et al. Amphoteric nature of copper impurities in Bi2Se3 crystals. Appl Phys, 1974, 5: 217–221

    Article  Google Scholar 

  31. Navrátil J, Klichová I, Karamazov S, et al. Behavior of Ag admixtures in Sb2Te3 and Bi2Te3 single crystals. J Solid State Chem, 1998, 140: 29–37

    Article  Google Scholar 

  32. Liu M, Zhang X, Wu Y, et al. Screening metal electrodes for thermoelectric PbTe. ACS Appl Mater Interfaces, 2023, 15: 6169–6176

    Article  CAS  Google Scholar 

  33. Muto A, Kraemer D, Hao Q, et al. Thermoelectric properties and efficiency measurements under large temperature differences. Rev Sci Instruments, 2009, 80: 093901

    Article  CAS  Google Scholar 

  34. Kuroki T, Kabeya K, Makino K, et al. Thermoelectric generation using waste heat in steel works. J Elec Materi, 2014, 43: 2405–2410

    Article  CAS  Google Scholar 

  35. Kraemer D, Sui J, McEnaney K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ Sci, 2015, 8: 1299–1308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (T2125008 and 52022068), and the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-07-E00096).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Liu M performed the synthesis and characterization, and wrote the draft. Li W performed data analysis. Pei Y supervised the design, data analysis and paper writing. All authors contributed to the general discussion.

Corresponding author

Correspondence to Yanzhong Pei  (裴艳中).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Min Liu received her BE degree in materials science and engineering from Soochow University, and MS degree from Central South University, China. She is now a PhD candidate at Tongji University under the supervision of Prof. Yanzhong Pei. Her research focuses on electrode and diffusion barrier materials for thermoelectric devices.

Yanzhong Pei has been working on advanced thermoelectric semiconductors for longer than a decade, from synthesizing the materials to understanding the underlying physics and chemistry. He holds a BE degree from Central South University in China, a PhD degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences, and postdoctoral research experience for about five years at Michigan State University and the California Institute of Technology. He became a professor in 2012 at the School of Materials Science and Engineering, Tongji University, Shanghai, China. His interests are focused on materials physics and chemistry for energy applications.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, W. & Pei, Y. Screening metal diffusion barriers for thermoelectric Bi0.5Sb1.5Te3. Sci. China Mater. 67, 289–294 (2024). https://doi.org/10.1007/s40843-023-2696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2696-1

Keywords

Navigation