Skip to main content
Log in

Realizing dual regulation of polysulfides and lithium ions by a versatile separator

一种多功能隔膜实现对多硫离子和锂离子的双重调控

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Polysulfide shuttle and lithium dendrite growth severely limit the practical application of lithium−sulfur batteries (LSBs); however, a rational design of a separator can achieve the effect of two birds with one stone. Herein, nitrogen-doped carbon nanotubes with dispersed TiN/CoO particles (TCCNT) were designed and applied as a separator modification layer for LSBs. The porous structure of TCCNT can confine the diffusion of soluble polysulfides by physical adsorption first, and then the TiN/CoO particles carried on its surface/inside can not only further anchor the polysulfides via chemisorption but also act as a catalyst to facilitate their conversion. Meanwhile, the good lithophilicity of TiN was beneficial to homogenizing the Li+ fluxes, guiding a uniform deposition of lithium and realizing a stable cycle of the lithium symmetric battery for up to 2000 h at 5 mA cm−2. Ascribed to the rational layout of the TCCNT layer that allows maximization of the synergistic effect between various material components, an LSB equipped with a modified separator displayed satisfactory electrochemical performance in both cases of conventional and high sulfur loadings, demonstrating its practical application potential.

摘要

多硫离子穿梭和锂枝晶生长严重阻碍了锂硫电池的实际应用进 程, 而合理的隔膜结构可以达到一石二鸟的作用. 本工作设计了一种携 带有分散性TiN/CoO颗粒的氮掺杂碳纳米管结构(TCCNT), 并将其用 于锂硫电池隔膜修饰层. TCCNT的多孔结构和表面/内部携带的TiN/CoO颗粒不但实现了对多硫化物的物理、化学吸附和快速催化转化作 用, 其高导电性的空腔结构和亲锂作用还能够均化锂离子流, 在 5 mA cm−2的电流密度下实现长达2000 h的均匀锂沉积/剥离过程. TCCNT合理的结构设计有利于各材料组分之间最大限度地发挥协同 效应. 采用改性隔膜所组装的锂硫电池在常规和高硫载量两种情况下 均表现出较好的电化学性能, 表明其具有一定的实际应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sun C, Sheng J, Zhang Q, et al. Self-extinguishing Janus separator with high safety for flexible lithium−sulfur batteries. Sci China Mater, 2022, 65: 2169–2178

    Article  CAS  Google Scholar 

  2. Yang S, Xiao R, Hu T, et al. Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li−S batteries. Nano Energy, 2021, 90: 106584

    Article  CAS  Google Scholar 

  3. Liu Y, Zhao M, Hou L, et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium−sulfur batteries with encapsulating lithium polysulfide electrolyte. Angew Chem Int Ed, 2023, 62: e202303363

    Article  CAS  Google Scholar 

  4. Pei F, Dai S, Guo B, et al. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium−sulfur batteries with high gravimetric energy densities. Energy Environ Sci, 2021, 14: 975–985

    Article  CAS  Google Scholar 

  5. Shi H, Ren X, Lu J, et al. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv Energy Mater, 2020, 10: 2002271

    Article  CAS  Google Scholar 

  6. Zhang W, Hong D, Su Z, et al. Tailored ZnO−ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li−S batteries. Energy Storage Mater, 2022, 53: 404–414

    Article  Google Scholar 

  7. Guo Z, Song X, Wang X, et al. Inhibition of polysulfide shuttling in high-polarity electrolytes via liquid/quasi-solid interface in lithium−sulfur batteries. Sci China Mater, 2023, 66: 505–512

    Article  CAS  Google Scholar 

  8. Wang W, Huai L, Wu S, et al. Ultrahigh-volumetric-energy-density lithium−sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano, 2021, 15: 11619–11633

    Article  CAS  Google Scholar 

  9. Zhang LH, He B, Li WC, et al. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level incavity encapsulation for lithium−sulfur cathode. Adv Energy Mater, 2017, 7: 1701518

    Article  Google Scholar 

  10. Jiang C, Li L, Jia Q, et al. In situ synthesis of organopolysulfides enabling spatial and kinetic co-mediation of sulfur chemistry. ACS Nano, 2022, 16: 9163–9171

    Article  CAS  Google Scholar 

  11. Chen S, Wang D, Zhao Y, et al. Superior performance of a lithium−sulfur battery enabled by a dimethyl trisulfide containing electrolyte. Small Methods, 2018, 2: 1800038

    Article  Google Scholar 

  12. Chen W, Qian T, Xiong J, et al. A new type of multifunctional polar binder: Toward practical application of high energy lithium sulfur batteries. Adv Mater, 2017, 29: 1605160

    Article  Google Scholar 

  13. Yuan H, Huang JQ, Peng HJ, et al. A review of functional binders in lithium−sulfur batteries. Adv Energy Mater, 2018, 8: 1802107

    Article  Google Scholar 

  14. Wei Z, Ren Y, Sokolowski J, et al. Mechanistic understanding of the role separators playing in advanced lithium−sulfur batteries. InfoMat, 2020, 2: 483–508

    Article  CAS  Google Scholar 

  15. Aslam MK, Jamil S, Hussain S, et al. Effects of catalysis and separator functionalization on high-energy lithium−sulfur batteries: A complete review. Energy Environ Mater, 2023, 6: e12420

    Article  CAS  Google Scholar 

  16. Ao J, Xie Y, Lai Y, et al. CoSe2 nanoparticles-decorated carbon nanofibers as a hierarchical self-supported sulfur host for high-energy lithium−sulfur batteries. Sci China Mater, 2023, 66: 3075–3083

    Article  CAS  Google Scholar 

  17. Chen C, Jiang Q, Xu H, et al. Ni/SiO2/graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium−sulfur batteries. Nano Energy, 2020, 76: 105033

    Article  CAS  Google Scholar 

  18. Ma Y, Wu T, Jiao Y, et al. Single nickel atom catalysts enable fast polysulfide redox for safe and long-cycle lithium−sulfur batteries. Small, 2022, 18: 2205470

    Article  CAS  Google Scholar 

  19. Wang M, Zhu Y, Sun Y, et al. A universal graphene-selenide heterostructured reservoir with elevated polysulfide evolution efficiency for pragmatic lithium−sulfur battery. Adv Funct Mater, 2022, 33: 2211978

    Article  Google Scholar 

  20. Chang Z, Yang H, Pan A, et al. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat Commun, 2022, 13: 6788

    Article  CAS  Google Scholar 

  21. Li Q, Song Y, Xu R, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li−S batteries. ACS Nano, 2018, 12: 10240–10250

    Article  CAS  Google Scholar 

  22. Zhang L, Wang Y, Niu Z, et al. Advanced nanostructured carbon-based materials for rechargeable lithium−sulfur batteries. Carbon, 2019, 141: 400–416

    Article  CAS  Google Scholar 

  23. Jiang J, Li F, Zou J, et al. Three-dimensional MXenes heterostructures and their applications. Sci China Mater, 2022, 65: 2895–2910

    Article  Google Scholar 

  24. Liu W, Lei M, Zhou X, et al. Heterojunction interlocked catalysis-conduction network in monolithic porous-pipe scaffold for endurable Li−S batteries. Energy Storage Mater, 2023, 58: 74–84

    Article  Google Scholar 

  25. Li Y, Zhang X, Zhang Q, et al. Layer-by-layer assembly of CeO2−x@C−rGO nanocomposites and CNTs as a multifunctional separator coating for highly stable lithium−sulfur batteries. ACS Appl Mater Interfaces, 2022, 14: 18634–18645

    Article  CAS  Google Scholar 

  26. Wang J, Zhao T, Yang Z, et al. MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium−sulfur batteries. ACS Appl Mater Interfaces, 2019, 11: 38654–38662

    Article  CAS  Google Scholar 

  27. Jiang G, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li−S batteries. Chem Eng J, 2019, 373: 1309–1318

    Article  CAS  Google Scholar 

  28. Gu S, Jiang H, Li X, et al. Dispersing single-layered Ti3C2Tx nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li−S batteries. Energy Storage Mater, 2022, 53: 32–41

    Article  Google Scholar 

  29. Li X, Sun X. Interface design and development of coating materials in lithium−sulfur batteries. Adv Funct Mater, 2018, 28: 1801323

    Article  Google Scholar 

  30. Lu Z, Li W, Long Y, et al. Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Adv Funct Mater, 2020, 30: 1907343

    Article  CAS  Google Scholar 

  31. Huang Y, Wen B, Jiang Z, et al. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Res, 2023, 16: 8072–8081

    Article  CAS  Google Scholar 

  32. Du M, Sun Y, Liu B, et al. Smart construction of an intimate lithium∣garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv Funct Mater, 2021, 31: 2101556

    Article  CAS  Google Scholar 

  33. Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule, 2018, 2: 764–777

    Article  CAS  Google Scholar 

  34. Chen L, Sun Y, Wei X, et al. Dual-functional V2C MXene assembly in facilitating sulfur evolution kinetics and Li-ion sieving toward practical lithium−sulfur batteries. Adv Mater, 2023, 35: 2300771

    Article  CAS  Google Scholar 

  35. Pan H, Cheng Z, Xiao Z, et al. The fusion of imidazolium-based ionic polymer and carbon nanotubes: One type of new heteroatom-doped carbon precursors for high-performance lithium−sulfur batteries. Adv Funct Mater, 2017, 27: 1703936

    Article  Google Scholar 

  36. Noh J, Chen W, Wu P, et al. Large cumulative capacity enabled by regulating lithium plating with metal-organic framework layers on porous carbon nanotube scaffolds. Adv Funct Mater, 2021, 31: 2104899

    Article  CAS  Google Scholar 

  37. Huang X, Tang J, Qiu T, et al. Nanoconfined topochemical conversion from MXene to ultrathin non-layered tin nanomesh toward superior electrocatalysts for lithium−sulfur batteries. Small, 2021, 17: 2101360

    Article  CAS  Google Scholar 

  38. Yuan W, Cheng L, Wu H, et al. One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability. Chem Commun, 2018, 54: 2755–2758

    Article  CAS  Google Scholar 

  39. Xu D, Chen R, Chen B, et al. High-performance flexible sodium-ion batteries enabled by high-voltage sodium vanadium fluorophosphate nanorod arrays. Sci China Mater, 2023, 66: 3837–3845

    Article  CAS  Google Scholar 

  40. Hu G, Xu C, Sun Z, et al. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li−S batteries. Adv Mater, 2016, 28: 1603–1609

    Article  CAS  Google Scholar 

  41. Jiang Y, Liang P, Tang M, et al. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li−S batteries. J Mater Chem A, 2022, 10: 22080–22092

    Article  CAS  Google Scholar 

  42. Chen XR, Zhao BC, Yan C, et al. Review on Li deposition in working batteries: From nucleation to early growth. Adv Mater, 2021, 33: 2004128

    Article  CAS  Google Scholar 

  43. Wu J, Ye T, Wang Y, et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li−S batteries. ACS Nano, 2022, 16: 15734–15759

    Article  CAS  Google Scholar 

  44. Qiao Z, Zhang Y, Meng Z, et al. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium−sulfur batteries. Adv Funct Mater, 2021, 31: 2100970

    Article  CAS  Google Scholar 

  45. Cañas NA, Hirose K, Pascucci B, et al. Investigations of lithium−sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta, 2013, 97: 42–51

    Article  Google Scholar 

  46. Huang Y, Lin L, Zhang Y, et al. Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries. Nano-Micro Lett, 2023, 15: 67

    Article  CAS  Google Scholar 

  47. He Y, Chang Z, Wu S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li−S batteries. Adv Energy Mater, 2018, 8: 1802130

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22109127), China Postdoctoral Science Foundation (2021M702666), the Fundamental Research Funds for the Central Universities (D5000210129), the Youth Project of “Shaanxi High-level Talents Introduction Plan”, and the State Key Laboratory of Solidification Processing.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang K and He Y conceived the project and designed the experiments. Yang K performed the experiments, analyzed the data and wrote the manuscript. Xu X assisted in material preparation. Li C contributed to the data analysis. Zhao F and Li J carried out the microscopy analysis. He Y supervised the work and revised the manuscript.

Corresponding author

Correspondence to Yibo He  (贺亦柏).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Ke Yang is pursuing a PhD degree at the School of Materials Science and Engineering, Northwestern Polytechnical University, under the supervision of Associate Professor Yibo He. His research focuses on the design of MXenes materials for lithium−sulfur batteries.

Yibo He is an associate professor at the School of Materials Science and Engineering, Northwestern Polytechnical University. She received her PhD degree from Tsukuba University and the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. Her current research interests focus on the development of functional materials and rechargeable energy storage systems, including lithium metal batteries and supercapacitors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Xu, X., Li, C. et al. Realizing dual regulation of polysulfides and lithium ions by a versatile separator. Sci. China Mater. 67, 116–124 (2024). https://doi.org/10.1007/s40843-023-2695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2695-5

Keywords

Navigation