Skip to main content
Log in

Movable type printing-inspired information storage enabled by self-healable fluorescent liquid crystal elastomers

受活字印刷启发的可用于信息存储的自愈合荧光液晶弹性体

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of information storage materials plays a key role in the advancement of the information society. However, the storage of fluorescent information using photoresponsive molecules requires various different masks, and each change in the stored information needs to be replaced with a new type of mask, which causes inconvenience for the information recording. Here, inspired by movable type printing, a phototunable, self-healable fluorescent liquid crystal elastomer (FLCE) serving as an information storage medium is developed using a simple two-stage amine-acrylate aza-Michael reaction under mild heating. The obtained FLCE film exhibits phototunable fluorescence properties due to Z/E photoisomerization of the α-cyanodiarylethene molecules and shows excellent self-healing and reconfigurable shape capability by introducing dynamic boronic ester bonds. With the FLCE films as storage media, proof-of-concept movable type printing-motivated information recordings are demonstrated, thus avoiding repeated photomask replacement and prolonging the service life of the storage materials. This work provides valuable insight for the development of easy-to-use and large-area information storage materials.

摘要

信息存储材料的发展在信息社会的进步中起着关键作用. 然而, 在光寻址记录信息时, 通常每次记录信息都需要更换不同的掩模, 这在 实际应用中极为不便. 本文受活字印刷术的启发, 开发了一种可作为信 息存储和记录介质的自愈合荧光液晶弹性体. 该薄膜在温和的加热条 件下经由简单的两阶段胺-丙烯酸酯aza-Michael反应制备而成. 由于α-氰基取代二芳基乙烯荧光分子的光异构化, 液晶弹性体薄膜表现出光 可调的荧光特性. 同时, 动态硼酸酯键的引入使其具备了优异的自愈合 和可重构形状性能. 以上述荧光液晶弹性体薄膜作为存储介质, 概念验 证性地展示了活字印刷驱动的信息记录, 该方法避免了重复更换光掩 膜, 并延长了存储材料的使用寿命. 这项工作为开发易于使用的、可大 面积制备的信息存储材料提供了有益的启示.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang Q, Wang W, Cai C, et al. Underwater luminescent labeling materials constructed from a supramolecular approach. Mater Horiz, 2022, 9: 1984–1991

    Article  CAS  Google Scholar 

  2. Yang X, Guo M, Yan J, et al. A repeatable dual-encryption platform from recyclable thermosets with self-healing ability and shape memory effect. Adv Funct Mater, 2022, 32: 2205177

    Article  CAS  Google Scholar 

  3. Sun Y, Le X, Zhou S, et al. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater, 2022, 34: 2201262

    Article  CAS  Google Scholar 

  4. Chen Z, Chen Y, Guo Y, et al. Paper-structure inspired multiresponsive hydrogels with solvent-induced reversible information recording, self-encryption, and multidecryption. Adv Funct Mater, 2022, 32: 2201009

    Article  CAS  Google Scholar 

  5. Nagarkar AA, Root SE, Fink MJ, et al. Storing and reading information in mixtures of fluorescent molecules. ACS Cent Sci, 2021, 7: 1728–1735

    Article  CAS  Google Scholar 

  6. Zhuang Y, Ren X, Che X, et al. Organic photoresponsive materials for information storage: A review. Adv Photon, 2020, 3: 014001

    Article  Google Scholar 

  7. Ye S, Gao J, Juan A, et al. Polarized upconverting luminescence in a liquid crystal polymer network/upconverison nanorods composite film. Mol Crysts Liquid Crysts, 2019, 669: 36–45

    Article  Google Scholar 

  8. Martins I, Tomás H, Lahoz F, et al. Engineered fluorescent carbon dots and G4–G6 PAMAM dendrimer nanohybrids for bioimaging and gene delivery. Biomacromolecules, 2021, 22: 2436–2450

    Article  CAS  Google Scholar 

  9. Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater, 2023, 22: 737–745

    Article  CAS  Google Scholar 

  10. Su G, Li Z, Gong J, et al. Information-storage expansion enabled by a resilient aggregation-induced-emission-active nanocomposite hydrogel. Adv Mater, 2022, 34: 2207212

    Article  CAS  Google Scholar 

  11. Shang H, Le X, Sun Y, et al. Integrating photorewritable fluorescent information in shape-memory organohydrogel toward dual encryption. Adv Opt Mater, 2022, 10: 2200608

    Article  CAS  Google Scholar 

  12. Wei S, Lu W, Shi H, et al. Light-writing and projecting multicolor fluorescent hydrogels for on-demand information display. Adv Mater, 2023, 35: 2300615

    Article  CAS  Google Scholar 

  13. Zhang H, Liu H, Hu Z, et al. Multicolor fluorescent supramolecular adhesive gels based on a single molecule with aggregation-induced ratiometric emission. SupraMol Mater, 2022, 1: 100018

    Google Scholar 

  14. Zhang Y, Zhang S, Liang C, et al. Sequential-stimuli induced stepwise-response of pyridylpyrenes. Adv Mater, 2023, 35: 2302732

    Article  CAS  Google Scholar 

  15. He X, Zhang J, Liu X, et al. A multiresponsive functional AIEgen for spatiotemporal pattern control and all-round information encryption. Angew Chem Int Ed, 2023, 62: e202300353

    Article  CAS  Google Scholar 

  16. Yi H, Gao J, Lin S, et al. Photoresponsive α-cyanostilbene-containing fluorescent liquid crystal polymers based on ring-opening metathesis polymerization for information storage and encryption. Polymer, 2022, 258: 125289

    Article  CAS  Google Scholar 

  17. Luo M, Zhao J, Liu Y, et al. All-visible-light triggered photoswitch of dithienylethene derivatives with molecular conformation changes excess 5 Å. Adv Funct Mater, 2022, 33: 2211009

    Article  Google Scholar 

  18. Gao J, He Y, Cong X, et al. Reconfigurable fluorescent liquid crystal elastomers for integrated visual and haptic information storage. ACS Appl Mater Interfaces, 2022, 14: 53348–53358

    Article  CAS  Google Scholar 

  19. He Y, Zhang S, Bisoyi HK, et al. Irradiation-wavelength directing circularly polarized luminescence in self-organized helical superstructures enabled by hydrogen-bonded chiral fluorescent molecular switches. Angew Chem Int Ed, 2021, 60: 27158–27163

    Article  CAS  Google Scholar 

  20. Gao J, Tian M, He Y, et al. Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping. Adv Funct Mater, 2021, 32: 2107145

    Article  Google Scholar 

  21. Kondo M, Nakanishi T, Matsushita T, et al. Directional mechanochromic luminescent behavior in liquid crystalline composite polymeric films. Macro Chem Phys, 2017, 218: 1600321

    Article  Google Scholar 

  22. Li X, Wang H, Chen J, et al. Visible-light-driven photoswitchable fluorescent polymers for photorewritable pattern, anti-counterfeiting, and information encryption. Adv Funct Mater, 2023, 33: 2303765

    Article  CAS  Google Scholar 

  23. Jiang J, Zhang P, Tian Y, et al. Reconfigurable photoswitchable multistate fluorescent polymer-based information encryption toolbox. Sci China Mater, 2023, 66: 1949–1958

    Article  CAS  Google Scholar 

  24. Luo W, Xu X, Tang Y, et al. Multiregulated color and fluorescence of a cyanostilbene-based AIEgen by light and pH. Sci China Mater, 2022, 66: 1180–1188

    Article  Google Scholar 

  25. Wang Q, Qi Z, Wang Q, et al. A time-dependent fluorescent hydrogel for “time-lock” information encryption. Adv Funct Mater, 2022, 32: 2208865

    Article  CAS  Google Scholar 

  26. Lou K, Hu Z, Zhang H, et al. Information storage based on stimuli-responsive fluorescent 3D code materials. Adv Funct Mater, 2022, 32: 2113274

    Article  CAS  Google Scholar 

  27. Du Z, Zhang T, Gai H, et al. Multi-component collaborative step-by-step coloring strategy to achieve high-performance light-responsive color-switching. Adv Sci, 2022, 9: e2103309

    Article  Google Scholar 

  28. Wang H, Ji X, Page ZA, et al. Fluorescent materials-based information storage. Mater Chem Front, 2020, 4: 1024–1039

    Article  CAS  Google Scholar 

  29. Gao J, Tang Y, Martella D, et al. Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems. Responsive Mater, 2023, 1: e20230008

    Article  Google Scholar 

  30. Sun Y, Wang L, Zhu Z, et al. A 3D-printed ferromagnetic liquid crystal elastomer with programmed dual-anisotropy and multi-responsiveness. Adv Mater, 2023, 35: 2302824

    Article  CAS  Google Scholar 

  31. del Pozo M, Sol JAHP, Schenning APHJ, et al. 4D printing of liquid crystals: What’s right for me? Adv Mater, 2022, 34: 2104390

    Article  CAS  Google Scholar 

  32. Yang M, Xu Y, Zhang X, et al. Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv Funct Mater, 2022, 32: 2201884

    Article  CAS  Google Scholar 

  33. Luo Q, Gao J, Lin S, et al. Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications. J Mater Chem C, 2022, 10: 1808–1815

    Article  CAS  Google Scholar 

  34. Wang M, Song Y, Bisoyi HK, et al. A liquid crystal elastomer-based unprecedented two-way shape-memory aerogel. Adv Sci, 2021, 8: 2102674

    Article  CAS  Google Scholar 

  35. Wu Y, Zhang S, Yang Y, et al. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci Adv, 2022, 8: eabo6021

    Article  CAS  Google Scholar 

  36. Wei W, Gao J, Yang J, et al. A NIR light-triggered pyroelectric-dominated generator based on a liquid crystal elastomer composite actuator for photoelectric conversion and self-powered sensing. RSC Adv, 2018, 8: 40856–40865

    Article  CAS  Google Scholar 

  37. Chen G, Jin B, Shi Y, et al. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv Mater, 2022, 34: 2201679

    Article  CAS  Google Scholar 

  38. Nie ZZ, Wang M, Yang H. Structure-induced intelligence of liquid crystal elastomers. Chem Eur J, 2023, 29: e202301027

    Article  CAS  Google Scholar 

  39. Ni Y, Li X, Hu J, et al. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem Mater, 2019, 31: 3388–3394

    Article  CAS  Google Scholar 

  40. Zhang C, Lu X, Wang Z, et al. Progress in utilizing dynamic bonds to fabricate structurally adaptive self-healing, shape memory, and liquid crystal polymers. Macromol Rapid Commun, 2022, 43: 2100768

    Article  CAS  Google Scholar 

  41. Liu C, Tan Y, Xu H. Functional polymer materials based on dynamic covalent chemistry. Sci China Mater, 2022, 65: 2017–2034

    Article  Google Scholar 

  42. Huang S, Kong X, Xiong Y, et al. An overview of dynamic covalent bonds in polymer material and their applications. Eur Polym J, 2020, 141: 110094

    Article  CAS  Google Scholar 

  43. Jia Y, Guan Q, Zhang L, et al. A fluorine-rich phenolic polyurethane elastomer with excellent self-healability and reprocessability and its applications for wearable electronics. Sci China Mater, 2022, 65: 2553–2564

    Article  Google Scholar 

  44. Jiang ZC, Xiao YY, Hou JB, et al. Dynamic AIE crosslinks in liquid crystal networks: Visualizing for actuation-guiding, re-bonding for actuation-altering. Angew Chem Int Ed, 2022, 61: e202211959

    Article  CAS  Google Scholar 

  45. Yang S, Bai J, Sun X, et al. Robust and healable poly(disulfides) supramolecular adhesives enabled by dynamic covalent adaptable networks and noncovalent hydrogen-bonding interactions. Chem Eng J, 2023, 461: 142066

    Article  CAS  Google Scholar 

  46. Wang BS, Zhang Q, Wang ZQ, et al. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent materials. Angew Chem Int Ed, 2023, 62: e202215329

    Article  CAS  Google Scholar 

  47. Shi CY, He DD, Wang BS, et al. A dynamic supramolecular H-bonding network with orthogonally tunable clusteroluminescence. Angew Chem Int Ed, 2023, 62: e202214422

    Article  CAS  Google Scholar 

  48. Li YM, Zhang ZP, Rong MZ, et al. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv Mater, 2023, 35: 2211009

    Article  CAS  Google Scholar 

  49. Maes S, Scholiers V, Du Prez FE. Photo-crosslinking and reductive decrosslinking of polymethacrylate-based copolymers containing 1,2-dithiolane rings. Macro Chem Phys, 2022, 224: 2100445

    Article  Google Scholar 

  50. Davidson EC, Kotikian A, Li S, et al. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv Mater, 2020, 32: 1905682

    Article  CAS  Google Scholar 

  51. Fan F, Ji S, Sun C, et al. Wavelength-controlled dynamic metathesis: A light-driven exchange reaction between disulfide and diselenide bonds. Angew Chem Int Ed, 2018, 57: 16426–16430

    Article  CAS  Google Scholar 

  52. Ji S, Cao W, Yu Y, et al. Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv Mater, 2015, 27: 7740–7745

    Article  CAS  Google Scholar 

  53. Ma J, Yang Y, Valenzuela C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew Chem Int Ed, 2022, 61: e202116219

    Article  CAS  Google Scholar 

  54. Liu J, Qi P, Meng D, et al. Eco-friendly flame retardant and smoke suppression coating containing boron compounds and phytic acids for nylon/cotton blend fabrics. Industrial Crops Products, 2022, 186: 115239

    Article  CAS  Google Scholar 

  55. Huo S, Zhou Z, Jiang J, et al. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem Eng J, 2022, 427: 131578

    Article  CAS  Google Scholar 

  56. Röttger M, Domenech T, van der Weegen R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356: 62–65

    Article  Google Scholar 

  57. Lee JH, Bae J, Hwang JH, et al. Robust and reprocessable artificial muscles based on liquid crystal elastomers with dynamic thiourea bonds. Adv Funct Mater, 2022, 32: 2110360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073017 and 51773009).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Guo J and Gao J designed this project; Gao J, Cong X, Tang Y performed the experiments; Gao J, Cong X and Guo J analyzed the data and wrote the manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Jinbao Guo  (郭金宝).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Jingjing Gao received her PhD degree in materials science and engineering from Beijing University of Chemical Technology (BUCT) in 2023 under the supervision of Prof. Jinbao Guo. Her research interests mainly focus on stimulus-responsive fluorescent liquid crystal actuators and their applications in information storage and encryption.

Xiaoyang Cong is a Master’s student in materials science and engineering at BUCT. She is under the supervision of Professor Jinbao Guo. Her research interests focus on multi-functional fluorescent liquid crystal materials and their applications in information storage, encryption, and environmental monitoring.

Jinbao Guo is a professor at the College of Materials Science and Engineering, BUCT. He received his PhD degree in materials physics and chemistry, University of Science and Technology Beijing (USTB), China, in 2008. He spent one year working at the College of Engineering, University of Michigan as a Research Fellow in 2012. His current interests include stimulus-responsive smart liquid crystal materials and advanced polymer materials, and he also concerns their potential applications in diverse areas ranging from photonics to energy and sustainable fields.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Cong, X., Tang, Y. et al. Movable type printing-inspired information storage enabled by self-healable fluorescent liquid crystal elastomers. Sci. China Mater. 67, 355–362 (2024). https://doi.org/10.1007/s40843-023-2694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2694-0

Keywords

Navigation