Skip to main content
Log in

Synthesis of salinity ultra-sensitive ionic hydrogels for visual salinity detection and usage as an intelligent liquid valve

盐度超敏感离子水凝胶的制备及其在可视化盐度检 测和智能液体阀上的应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Functional hydrogel materials with large-scale deformation induced by ultra-low salinity as an external stimulus have promising applications in seawater osmotic energy harvesting, stimulus-responsive separation materials, intelligent sensors, and actuators. A salt-responsive hydrogel undergoing large volumetric changes (∼1/60) with the use of dilute salt solution (0.01–0.6 wt% NaCl) is designed via facile random copolymerization of polyelectrolyte and zwitterionic polymer chains in this study. The salt-responsive swelling/deswelling properties, morphologies, and mechanical properties of the prepared hydrogels are systematically examined. Internal reconfiguration of distinct polymeric networks is characterized by different salinity percentages via Raman spectroscopy. Subsequently, a portable ion-detection device comprising easy-to-access capillary tubes and salt-responsive hydrogel is successfully designed and compared with a commercial water quality monitoring device. Moreover, intelligent liquid valves with autosensing and actuating functions are developed for the regulation of liquid leakage and transport using the same salt-sensitive hydrogel. It is highly expected that these salinity ultra-sensitive ionic hydrogels would have great potential in monitoring and regulating freshwater resources, seawater osmotic energy harvesting, stimulus-responsive separation materials, and intelligent soft robotics and electronics.

摘要

对超低浓度盐溶液响应产生大尺度形变的功能水凝胶在海水渗 透能收集、刺激响应分离材料、智能传感和致动器等方面具有广阔的 应用前景. 本文结合聚电解质和两性离子聚合物开发了一种盐度超敏 感离子水凝胶. 以稀盐作为分散介质时, 水凝胶体积缩小为原来1/60. 本文研究了盐响应水凝胶的溶胀、形态和力学性能, 并基于拉曼光谱 对聚合物网络盐响应重构行为进行了表征. 此外, 利用毛细管和盐响应 水凝胶成功设计了一种可视化、便携离子检测计, 可媲美商用水质监 测计. 同时开发了具有传感和致动功能的智能液阀, 用于自动感应调节 液体的流出和输送. 该盐敏感水凝胶在淡水监测和调控、海水渗透能 收集、刺激响应分离材料、智能软机器人和电子穿戴等方面具有很大 的应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Jiang Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002, 417: 515–522

    Article  CAS  Google Scholar 

  2. Cifuentes F, Vergara J, Hidalgo C. Sodium/calcium exchange in amphibian skeletal muscle fibers and isolated transverse tubules. Am J Physiol Cell Physiol, 2000, 279: C89–C97

    Article  CAS  Google Scholar 

  3. Eisner DA, Caldwell JL, Kistamás K, et al. Calcium and excitation-contraction coupling in the heart. Circ Res, 2017, 121: 181–195

    Article  CAS  Google Scholar 

  4. Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci USA, 2017, 114: E2729–E2738

    CAS  Google Scholar 

  5. Sharma S, Jain P, Tiwari S. Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery. Int J Biol Macromolecules, 2020, 160: 489–495

    Article  CAS  Google Scholar 

  6. Cai Y, Liu C, Gong K, et al. Mussel-inspired quaternary composite hydrogels with high strength and high tissue adhesion for transdermal drug delivery: Synergistic hydrogen bonding and drug release mechanism. Chem Eng J, 2023, 465: 142942

    Article  CAS  Google Scholar 

  7. Wang Y, Tebyetekerwa M, Liu Y, et al. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem Eng J, 2021, 420: 127637

    Article  CAS  Google Scholar 

  8. Qin Y, Mo J, Liu Y, et al. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv Funct Mater, 2022, 32: 2201846

    Article  CAS  Google Scholar 

  9. Li CY, Zheng SY, Hao XP, et al. Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels. Sci Adv, 2022, 8: eabm9608

    Google Scholar 

  10. Yang F, Hlushko R, Wu D, et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels. ACS Omega, 2019, 4: 2134–2141

    Article  CAS  Google Scholar 

  11. Xiao S, Yang Y, Zhong M, et al. Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects. ACS Appl Mater Interfaces, 2017, 9: 20843–20851

    Article  CAS  Google Scholar 

  12. Cui Y, Li D, Gong C, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano, 2021, 15: 13712–13720

    Article  CAS  Google Scholar 

  13. Ma Y, Hua M, Wu S, et al. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci Adv, 2020, 6: eabd2520

    Article  CAS  Google Scholar 

  14. Liu A, Gao X, Xie X, et al. Stiffness switchable supramolecular hydrogels by photo-regulating crosslinking status. Dyes Pigments, 2020, 177: 108288

    Article  CAS  Google Scholar 

  15. Dai L, Ma M, Xu J, et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem Mater, 2020, 32: 4324–4330

    Article  CAS  Google Scholar 

  16. Ding H, Zhang XN, Zheng SY, et al. Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. Polymer, 2017, 131: 95–103

    Article  CAS  Google Scholar 

  17. Chen W, Li D, Bu Y, et al. Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose, 2020, 27: 1113–1126

    Article  CAS  Google Scholar 

  18. Wu S, Hua M, Alsaid Y, et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv Mater, 2021, 33: 2007829

    Article  CAS  Google Scholar 

  19. Luo F, Sun TL, Nakajima T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater, 2015, 27: 2722–2727

    Article  CAS  Google Scholar 

  20. Sun TL, Kurokawa T, Kuroda S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater, 2013, 12: 932–937

    Article  CAS  Google Scholar 

  21. Andrade F, Roca-Melendres MM, Durán-Lara EF, et al. Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13: 1164

    Article  CAS  Google Scholar 

  22. Liu L, Tanguy NR, Yan N, et al. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress. Carbohydrate Polyms, 2022, 280: 119005

    Article  CAS  Google Scholar 

  23. Wu J, Shin H, Lee J, et al. Preparation of external stimulus-free gelatin-catechol hydrogels with injectability and tunable temperature responsiveness. ACS Appl Mater Interfaces, 2022, 14: 236–244

    Article  CAS  Google Scholar 

  24. Wang X, Qiu H, Wu Q, et al. Salt-enhanced CO2-responsiveness of microgels. ACS Macro Lett, 2020, 9: 1611–1616

    Article  CAS  Google Scholar 

  25. Gao M, Gawel K, Stokke BT. Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J, 2014, 53: 65–74

    Article  CAS  Google Scholar 

  26. Zhang D, Fu Y, Huang L, et al. Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. J Mater Chem B, 2018, 6: 950–960

    Article  CAS  Google Scholar 

  27. Zheng B, Avni Y, Andelman D, et al. Charge regulation of polyelectrolyte gels: Swelling transition. Macromolecules, 2023, 56: 5217–5224

    Article  CAS  Google Scholar 

  28. Bui TQ, Cao VD, Do NBD, et al. Salinity gradient energy from expansion and contraction of poly(allylamine hydrochloride) hydrogels. ACS Appl Mater Interfaces, 2018, 10: 22218–22225

    Article  CAS  Google Scholar 

  29. Yu HC, Zheng SY, Fang L, et al. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv Mater, 2020, 32: 2005171

    Article  CAS  Google Scholar 

  30. Na H, Kang YW, Park CS, et al. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science, 2022, 376: 301–307

    Article  CAS  Google Scholar 

  31. Aleid S, Wu M, Li R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater Lett, 2022, 4: 511–520

    Article  CAS  Google Scholar 

  32. Das Mahapatra R, Imani KBC, Yoon J. Integration of macro-cross-linker and metal coordination: A super stretchable hydrogel with high toughness. ACS Appl Mater Interfaces, 2020, 12: 40786–40793

    Article  CAS  Google Scholar 

  33. Chen Q, Yan X, Zhu L, et al. Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem Mater, 2016, 28: 5710–5720

    Article  CAS  Google Scholar 

  34. Henderson KJ, Zhou TC, Otim KJ, et al. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules, 2010, 43: 6193–6201

    Article  CAS  Google Scholar 

  35. Lowe AB, McCormick CL. Synthesis and solution properties of zwitterionic polymers. Chem Rev, 2002, 102: 4177–4190

    Article  CAS  Google Scholar 

  36. Wang A, Fang W, Zhang J, et al. Zwitterionic nanohydrogels-decorated microporous membrane with ultrasensitive salt responsiveness for controlled water transport. Small, 2020, 16: 1903925

    Article  CAS  Google Scholar 

  37. Zhang C, Liu C, Xue X, et al. Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Interfaces, 2014, 6: 757–762

    Article  CAS  Google Scholar 

  38. Li P, Wang Z, Lin X, et al. Muscle-inspired ion-sensitive hydrogels with highly tunable mechanical performance for versatile industrial applications. Sci China Mater, 2022, 65: 229–236

    Article  CAS  Google Scholar 

  39. Xiao S, Zhang M, He X, et al. Dual salt- and thermoresponsive programmable bilayer hydrogel actuators with pseudo-interpenetrating double-network structures. ACS Appl Mater Interfaces, 2018, 10: 21642–21653

    Article  CAS  Google Scholar 

  40. Shao Z, Wu S, Zhang Q, et al. Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polym Chem, 2021, 12: 670–679

    Article  CAS  Google Scholar 

  41. Wu S, Shao Z, Xie H, et al. Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics. J Mater Chem A, 2021, 9: 1048–1061

    Article  CAS  Google Scholar 

  42. Li X, Luo F, Sun TL, et al. Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels. Macromolecules, 2023, 56: 535–544

    Article  CAS  Google Scholar 

  43. Arens L, Weißenfeld F, Klein CO, et al. Osmotic engine: Translating osmotic pressure into macroscopic mechanical force via poly(acrylic acid) based hydrogels. Adv Sci, 2017, 4: 1700112

    Article  Google Scholar 

  44. Zavahir S, Krupa I, AlMaadeed SA, et al. Polyzwitterionic hydrogels in engines based on the antipolyelectrolyte effect and driven by the salinity gradient. Environ Sci Technol, 2019, 53: 9260–9268

    Article  CAS  Google Scholar 

  45. Zhang S, Lin S, Zhao X, et al. Thermodynamic analysis and material design to enhance chemo-mechanical coupling in hydrogels for energy harvesting from salinity gradients. J Appl Phys, 2020, 128: 044701

    Article  CAS  Google Scholar 

  46. Hong Y, Wang Y, Tian Y, et al. Extracting salinity gradient energy via antifouling poly(acrylic acid- co-acrylamide) hydrogels in natural water. ACS Appl Polym Mater, 2021, 3: 6513–6523

    Article  CAS  Google Scholar 

  47. Ahmed M, Namboodiri V, Singh AK, et al. How ions affect the structure of water: A combined Raman spectroscopy and multivariate curve resolution study. J Phys Chem B, 2013, 117: 16479–16485

    Article  CAS  Google Scholar 

  48. Gao H, Mao J, Cai Y, et al. Euryhaline hydrogel with constant swelling and salinity-enhanced mechanical strength in a wide salinity range. Adv Funct Mater, 2020, 31: 2007664

    Article  Google Scholar 

  49. Perera PN, Browder B, Ben-Amotz D. Perturbations of water by alkali halide ions measured using multivariate Raman curve resolution. J Phys Chem B, 2009, 113: 1805–1809

    Article  CAS  Google Scholar 

  50. Schmidt P, Dybal J, Trchová M. Investigations of the hydrophobic and hydrophilic interactions in polymer-water systems by ATR FTIR and Raman spectroscopy. Vibal Spectr, 2006, 42: 278–283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21905009) and the 2023 Beijing Technology and Business University graduate research capacity improvement program project.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Gao H and Cai Y designed and adjusted the experimental program; Yan X, Shi Q, and Tong Y performed the experiments; Yan X processed the data and wrote the manuscript; Gao H, Wu J and Weng Y revised the original manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Hainan Gao  (高海南).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Hainan Gao is currently an associate professor at Beijing Technology and Business University (BTBU). She received her PhD degree from Jilin University in 2014 under the supervision of Prof. Bai Yang. She then worked as a postdoctor in Prof. Lei Jiang’s group at the Institute of Chemistry, Chinese Academic Sciences from 2014 to 2018. Her current research interests focus on basic and applied research on polymer gel-based materials with heteronetworks, mainly including the design, preparation and application of bio-inspired materials.

Xiaocao Yan is currently a Master’s student at BTBU. Her main research interests are the preparation of ionic hydrogels and the study of their salinity sensitivity and tolerance properties.

Supporting Information

40843_2023_2688_MOESM1_ESM.pdf

Synthesis of salinity ultra-sensitive ionic hydrogels for visual salinity detection and usage as an intelligent liquid valve

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Shi, Q., Cai, Y. et al. Synthesis of salinity ultra-sensitive ionic hydrogels for visual salinity detection and usage as an intelligent liquid valve. Sci. China Mater. 67, 321–330 (2024). https://doi.org/10.1007/s40843-023-2688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2688-y

Keywords

Navigation