Skip to main content
Log in

DNase-mimetics based on bimetallic hierarchically macroporous MOFs for the efficient inhibition of bacterial biofilm

仿DNase酶的双金属分级多孔MOFs: 制备与抗细菌 生物膜应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The accumulation of pathogenic biofilms poses a serious threat to human health, making their effective destruction and eradication significant, yet greatly challenging. Herein, the bimetallic hierarchically macroporous metal-organic frameworks (MOFs) (HMUiO-66(Zr/Ce)) with ability to cleave DNA were successfully constructed for the efficient destruction of biofilm and thus inhibition of bacterial growth. By systematically adjusting the feed ratios of Zr/Ce, their particle size could be minimized to approximately 150 nm and the amount of Zr introduced into HMUiO-66(Zr/Ce) could be precisely tailored over a broad molar range from 0 to 69%. The developed HMUiO-66(Zr/Ce) feature unique chemical and thermal stabilities as well as abundant exposed Lewis acid sites. Benefitting from their open macroporous structure and accessible active sites, they exhibit exceptional DNase-mimetic activities. The abundant Zr–OH sites present in bimetallic MOFs could effectively sequester nucleic acids, while adjacent Ce–OH moieties form nucleophilic attacks toward phosphorus–oxygen bonds, synergistically amplifying the hydrolysis rate of DNA. Such a unique DNA cleavage ability makes the developed HMUiO-66(Zr/Ce) competent to serve as nanomedicines for cleaving cross-linked extracellular DNA and eradicating bacterial biofilms. On this basis, we designed a biomimetic HMUiO-66(Zr/Ce)/polyvinylidene difluoride (PVDF) film which could discernibly suppress bacterial adherence and colonization, prefiguring their broad application potentials in antimicrobial therapy and medical devices.

摘要

本研究成功构建了具有切割DNA能力的双金属枝状大孔金属有 机框架(MOFs; HMUiO-66(Zr/Ce)), 并将其用于高效破坏生物膜并抑 制细菌生长. 通过改变Zr/Ce的投料比, 可在0–69%的范围内精确调控 Zr/Ce的引入量, 并控制其粒径在1 μm–150 nm之间. HMUiO-66(Zr/Ce)具有独特的化学和热稳定性, 开放的大孔结构和可接近的Lewis酸 活性位点, 表现出模拟DNA酶活性. 双金属MOFs中丰富的Zr–OH位点 能有效地捕获核酸, 而相邻的Ce–OH基团对磷氧键形成亲核攻击, 协同 放大DNA的水解速率, 使得开发的HMUiO-66(Zr/Ce)能够作为切割细 胞外DNA和清除细菌生物膜的纳米药物. 在此基础上, 我们设计了一 种仿生HMUiO-66(Zr/Ce)/PVDF膜, 该生物膜可抑制细菌粘附和定植, 在抗菌治疗和医疗器械中具有广阔的应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Berk V, Fong JCN, Dempsey GT, et al. Molecular architecture and assembly principles of vibrio cholerae biofilms. Science, 2012, 337: 236–239

    Article  CAS  Google Scholar 

  2. Chen Z, Ji H, Liu C, et al. A multinuclear metal complex based DNase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew Chem Int Ed, 2016, 55: 10732–10736

    Article  CAS  Google Scholar 

  3. Eshed M, Lellouche J, Gedanken A, et al. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against streptococcus mutans compared to nanosized CuO. Adv Funct Mater, 2014, 24: 1382–1390

    Article  CAS  Google Scholar 

  4. Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol, 2016, 14: 563–575

    Article  CAS  Google Scholar 

  5. Anderson GG, Palermo JJ, Schilling JD, et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 2003, 301: 105–107

    Article  CAS  Google Scholar 

  6. Vishwakarma A, Dang F, Ferrell A, et al. Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms. J Am Chem Soc, 2021, 143: 9440–9449

    Article  CAS  Google Scholar 

  7. Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat Rev Microbiol, 2018, 16: 397–409

    Article  CAS  Google Scholar 

  8. Whitchurch CB, Tolker-Nielsen T, Ragas PC, et al. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295: 1487

    Article  CAS  Google Scholar 

  9. Jennings LK, Storek KM, Ledvina HE, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci USA, 2015, 112: 11353–11358

    Article  CAS  Google Scholar 

  10. Gruber B, Kataev E, Aschenbrenner J, et al. Vesicles and micelles from amphiphilic Zinc(II)-cyclen complexes as highly potent promoters of hydrolytic DNA cleavage. J Am Chem Soc, 2011, 133: 20704–20707

    Article  CAS  Google Scholar 

  11. Liu Z, Wang F, Ren J, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208: 21–31

    Article  CAS  Google Scholar 

  12. Tasia W, Lei C, Cao Y, et al. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale, 2020, 12: 2328–2332

    Article  CAS  Google Scholar 

  13. Czescik J, Zamolo S, Darbre T, et al. A gold nanoparticle nanonuclease relying on a Zn(II) mononuclear complex. Angew Chem Int Ed, 2021, 60: 1423–1432

    Article  CAS  Google Scholar 

  14. Liang W, Xu H, Carraro F, et al. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks. J Am Chem Soc, 2019, 141: 2348–2355

    Article  CAS  Google Scholar 

  15. Zhou Z, Li S, Wei G, et al. Cerium-based metal-organic framework with intrinsic haloperoxidase-like activity for antibiofilm formation. Adv Funct Mater, 2022, 32: 2206294

    Article  CAS  Google Scholar 

  16. Li Q, Zhang J, Wang Y, et al. Construction of Au/Cu hierarchically organized particles with dual-functional enzyme-like activity. Sci China Mater, 2023, 66: 1471–1483

    Article  CAS  Google Scholar 

  17. Liang X, Han L. White peroxidase-mimicking nanozymes: Colorimetric pesticide assay without interferences of O2 and color. Adv Funct Mater, 2020, 30: 2001933

    Article  CAS  Google Scholar 

  18. Duan C, Yu Y, Xiao J, et al. Water-based routes for synthesis of metal-organic frameworks: A review. Sci China Mater, 2020, 63: 667–685

    Article  Google Scholar 

  19. Wen L, Sun K, Liu X, et al. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv Mater, 2023, 35: 2210669

    Article  CAS  Google Scholar 

  20. Bai Y, Zhang G, Zheng S, et al. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci China Mater, 2021, 64: 137–148

    Article  CAS  Google Scholar 

  21. Wang C, An B, Lin W. Metal-organic frameworks in solid-gas phase catalysis. ACS Catal, 2019, 9: 130–146

    Article  CAS  Google Scholar 

  22. Gan L, Nord MT, Lessard JM, et al. Biomimetic photodegradation of glyphosate in carborane-functionalized nanoconfined spaces. J Am Chem Soc, 2023, 145: 13730–13741

    Article  CAS  Google Scholar 

  23. Wang Z, Huang Y, Xu K, et al. Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing. Nat Commun, 2023, 14: 69

    Article  CAS  Google Scholar 

  24. Zhao T, Li S, Xiao YX, et al. Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity. Sci China Mater, 2021, 64: 252–258

    Article  Google Scholar 

  25. Li P, Klet RC, Moon SY, et al. Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulant. Chem Commun, 2015, 51: 10925–10928

    Article  CAS  Google Scholar 

  26. Shen Y, Pan T, Wang L, et al. Programmable logic in metal-organic frameworks for catalysis. Adv Mater, 2021, 33: 2007442

    Article  CAS  Google Scholar 

  27. Zhai X, Cao T, Lu X, et al. Construction of hierarchically porous metalorganic frameworks via vapor atmosphere etching. Sci China Mater, 2022, 65: 3062–3068

    Article  CAS  Google Scholar 

  28. Duan C, Liang K, Lin J, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Sci China Mater, 2022, 65: 298–320

    Article  CAS  Google Scholar 

  29. Li K, Yang J, Gu J. Hierarchically porous MOFs synthesized by soft-template strategies. Acc Chem Res, 2022, 55: 2235–2247

    Article  CAS  Google Scholar 

  30. Yang J, Li K, Li C, et al. Intrinsic apyrase-like activity of cerium-based metal-organic frameworks (MOFs): Dephosphorylation of adenosine tri- and diphosphate. Angew Chem Int Ed, 2020, 59: 22952–22956

    Article  CAS  Google Scholar 

  31. Zhu X, Gu J, Wang Y, et al. Inherent anchorages in UiO-66 nano-particles for efficient capture of alendronate and its mediated release. Chem Commun, 2014, 50: 8779–8782

    Article  CAS  Google Scholar 

  32. Li K, Zhao Y, Yang J, et al. Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat Commun, 2022, 13: 1879

    Article  CAS  Google Scholar 

  33. Yang J, Li K, Gu J. Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA. ACS Mater Lett, 2022, 4: 385–391

    Article  CAS  Google Scholar 

  34. Li K, Yang J, Huang R, et al. Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and hofmeister ion. Angew Chem Int Ed, 2020, 59: 14124–14128

    Article  CAS  Google Scholar 

  35. Lammert M, Wharmby MT, Smolders S, et al. Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem Commun, 2015, 51: 12578–12581

    Article  CAS  Google Scholar 

  36. Zhang Z, Yu J, Zhang J, et al. Tailored metastable Ce-Zr oxides with highly distorted lattice oxygen for accelerating redox cycles. Chem Sci, 2018, 9: 3386–3394

    Article  CAS  Google Scholar 

  37. Taddei M, van Bokhoven JA, Ranocchiari M. Influence of water in the synthesis of the zirconium-based metal-organic framework UiO-66: Isolation and reactivity of [ZrCl(OH)2(DMF)2]Cl. Inorg Chem, 2020, 59: 7860–7868

    Article  CAS  Google Scholar 

  38. Yang J, Li K, Li C, et al. In situ coupling of catalytic centers into artificial substrate mesochannels as super-active metalloenzyme mimics. Small, 2021, 17: 2101455

    Article  CAS  Google Scholar 

  39. Lomachenko KA, Jacobsen J, Bugaev AL, et al. Exact stoichiometry of CexZr6-x cornerstones in mixed-metal UiO-66 metal-organic frameworks revealed by extended X-ray absorption fine structure spectroscopy. J Am Chem Soc, 2018, 140: 17379–17383

    Article  CAS  Google Scholar 

  40. Sui J, Liu H, Hu S, et al. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv Mater, 2022, 34: 2109203

    Article  CAS  Google Scholar 

  41. Chen X, Chen X, Yu E, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J, 2018, 344: 469–479

    Article  CAS  Google Scholar 

  42. Lammert M, Glißmann C, Stock N. Tuning the stability of bimetallic Ce (IV)/Zr(IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans, 2017, 46: 2425–2429

    Article  CAS  Google Scholar 

  43. Prinetto F, Manzoli M, Ghiotti G, et al. Pd/Mg(Al)O catalysts obtained from hydrotalcites: Investigation of acid-base properties and nature of Pd phases. J Catal, 2004, 222: 238–249

    Article  CAS  Google Scholar 

  44. Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135: 11465–11468

    Article  CAS  Google Scholar 

  45. Mondloch JE, Katz MJ, Isley William C I, et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat Mater, 2015, 14: 512–516

    Article  CAS  Google Scholar 

  46. Liao Y, Sheridan T, Liu J, et al. Product inhibition and the catalytic destruction of a nerve agent simulant by zirconium-based metal-organic frameworks. ACS Appl Mater Interfaces, 2021, 13: 30565–30575

    Article  CAS  Google Scholar 

  47. Chen J, Li K, Yang J, et al. Bimetallic ordered large-pore mesoMOFs for simultaneous enrichment and dephosphorylation of phosphopeptides. ACS Appl Mater Interfaces, 2021, 13: 60173–60181

    Article  CAS  Google Scholar 

  48. Xu M, Feng L, Yan LN, et al. Discovery of precise pH-controlled biomimetic catalysts: Defective zirconium metal-organic frameworks as alkaline phosphatase mimics. Nanoscale, 2019, 11: 11270–11278

    Article  CAS  Google Scholar 

  49. Liu J, Redfern LR, Liao Y, et al. Metal-organic-framework-supported and -isolated ceria clusters with mixed oxidation states. ACS Appl Mater Interfaces, 2019, 11: 47822–47829

    Article  CAS  Google Scholar 

  50. Shirotori M, Nishimura S, Ebitani K. Genesis of a Bi-functional acid-base site on a Cr-supported layered double hydroxide catalyst surface for one-pot synthesis of furfurals from xylose with a solid acid catalyst. Catal Sci Technol, 2016, 6: 8200–8211

    Article  CAS  Google Scholar 

  51. Denny Jr. MS, Cohen SM. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed, 2015, 54: 9029–9032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22275054, 52103314, 21975072, and 51902106), Chenguang Plan of Shanghai Education Development Foundation (21CGA38), and the Program of Shanghai Academic/Technology Research Leader (23XD1401000).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang J and Gu J designed the project and acquired the funding. Xia F conducted the experiments, and performed the data analysis and interpretation. Chen J, Liu X, and Gong M assisted during the experiments and data analysis. Li K and Yang J supported the data interpretation. Xia F and Gu J wrote and modified the manuscript with input from all authors.

Corresponding authors

Correspondence to Jian Yang  (杨健) or Jinlou Gu  (顾金楼).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of this paper.

Fan Xia received her Master’s degree from Yangzhou University in 2021. Currently, she is a PhD candidate at East China University of Science and Technology (ECUST). Her current research interests focus on the construction of hierarchically porous MOFs for biomedical applications.

Jian Yang received his PhD degree from ECUST in 2018 and currently is an associate researcher at the Key Laboratory for Ultrafine Materials of Ministry of Education. His research interests focus on the design and construction of hierarchically porous MOFs for biocatalysis, biosensor, and imaging applications.

Jinlou Gu received his PhD degree in material physics and chemistry from Shanghai Institute of Ceramic, Chinese Academy of Sciences in 2005. Then, he worked as a postdoctoral fellow at The Chinese University of Hong Kong, University of Tokyo and Keele University from 2005 to 2008. Currently, he is a full professor at ECUST. His research focuses on the construction of porous materials and their applications in biosensing, biological separation, and biomimetic catalysis.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, F., Li, K., Yang, J. et al. DNase-mimetics based on bimetallic hierarchically macroporous MOFs for the efficient inhibition of bacterial biofilm. Sci. China Mater. 67, 343–354 (2024). https://doi.org/10.1007/s40843-023-2687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2687-7

Keywords

Navigation