Skip to main content
Log in

Remarkably enhancing proton conductivity by intrinsic surface sulfonation of a pyrazine-linked covalent organic framework

吡嗪基共价有机框架的内表面磺化作用显著增强质子传导性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Enhancing the proton conductivity and long-life reusability of the electrolytes by surface modification is a feasible way to fabricate effective proton-conductive electrolytes for the practical application of proton exchange membrane. Herein, on account of its framework robustness and the proton-accepting nitrogen atoms uniformly located in its skeleton, a pyrazine-based covalent organic framework (COF) was selected as a masterplate, and its tert-butyl-absent COF structure, PyHATP-1, was constructed. Experimental results reveal that after its intrinsic pore surface is treated by post-sulfonation, the proton conductivity of the sulfonated sample, PyHATP-1-SO3H, exponentially increases to 1.3 × 10−3 from 7.2 × 10−6 S cm−1 of PyHATP-1 at 353 K and 98% relative humidity. Moreover, while loading H3PO4 molecules into the skeletons, the sulfonated H3PO4@PyHATP-1-SO3H not only displays a remarkable increase in the proton conductivity (0.88 × 10−1 S cm−1) compared with the unsulfonated H3PO4@PyHATP-1 (2.0 × 10−3 S cm−1), but also exhibits a longer reusability. Contact angle tests and density functional theory calculations reveal that its remarkable enhancement in the proton conductivity and long-life reusability are attributed to the post-sulfonation of the pore surface, which significantly improves the affinity towards proton carriers (H2O and H3PO4 molecules). This work demonstrates that by modifying the intrinsic surface of porous materials, effective proton-conductive electrolytes with high proton conductivity and long-life reusability can be achieved.

摘要

通过表面改性方法以提高电解质的质子传导性和长寿命使用性 是制造高效质子传导电解质的可行方法. 本文以吡嗪基共价有机框架 (CS-COF)作为模板, 构建了其叔丁基缺失的COF结构, 命名为PyHATP-1. 研究发现, 在353 K和98%相对湿度条件下, 磺化样品PyHATP-1-SO3H的质子电导率从PyHATP-1的7.2 × 10−6 S cm−1指数级提 高到了1.3 × 10−3 S cm−1. 此外, 在骨架中加入磷酸分子后, 磺化的 H3PO4@PyHATP-1-SO3H不仅比未磺化的H3PO4@PyHATP-1 (2.0 × 10−3 S cm−1)具有显著提高的质子传导性(0.88 × 10−1 S cm−1), 而且表现 出更佳的重复使用性. 接触角测试和密度泛函理论计算表明, 其质子传 导性的显著增强和长寿命重复使用性应归功于孔隙表面的后磺化修 饰, 这大大提高了对质子载体(水和磷酸分子)的亲和力. 这项研究表明, 通过改变多孔材料的固有表面性质, 可以获得具有高质子电导率和长

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang F, Zuo Z, Li L, et al. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Angew Chem Int Ed, 2019, 58: 15010–15015

    Article  CAS  Google Scholar 

  2. Shi L, Xu A, Pan D, et al. Aqueous proton-selective conduction across two-dimensional graphyne. Nat Commun, 2019, 10: 1165

    Article  Google Scholar 

  3. Xu J, Jiang H, Shen Y, et al. Transparent proton transport through a two-dimensional nanomesh material. Nat Commun, 2019, 10: 3971

    Article  Google Scholar 

  4. Ward MD, Chaloux BL, Johannes MD, et al. Facile proton transport in ammonium borosulfate—An unhumidified solid acid polyelectrolyte for intermediate temperatures. Adv Mater, 2020, 32: 2003667

    Article  CAS  Google Scholar 

  5. Xing G, Yan T, Das S, et al. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed, 2018, 57: 5345–5349

    Article  CAS  Google Scholar 

  6. Liu B, Hu B, Du J, et al. Precise molecular-level modification of Nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew Chem Int Ed, 2021, 60: 6076–6085

    Article  CAS  Google Scholar 

  7. Li XM, Dong LZ, Liu J, et al. Intermediate-temperature anhydrous high proton conductivity triggered by dynamic molecular migration in tri-nuclear cluster lattice. Chem, 2020, 6: 2272–2282

    Article  CAS  Google Scholar 

  8. Ramaswamy P, Wong NE, Shimizu GKH. MOFs as proton conductors—Challenges and opportunities. Chem Soc Rev, 2014, 43: 5913–5932

    Article  CAS  Google Scholar 

  9. Lee JSM, Otake K, Kitagawa S. Transport properties in porous coordination polymers. Coord Chem Rev, 2020, 421: 213447

    Article  CAS  Google Scholar 

  10. Lim DW, Kitagawa H. Proton transport in metal-organic frameworks. Chem Rev, 2020, 120: 8416–8467

    Article  CAS  Google Scholar 

  11. Ye Y, Gong L, Xiang S, et al. Metal-organic frameworks as a versatile platform for proton conductors. Adv Mater, 2020, 32: 1907090

    Article  CAS  Google Scholar 

  12. Xue WL, Deng WH, Chen H, et al. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew Chem Int Ed, 2021, 60: 1290–1297

    Article  CAS  Google Scholar 

  13. Karmakar A, Illathvalappil R, Anothumakkool B, et al. Hydrogen-bonded organic frameworks (HOFs): A new class of porous crystalline proton-conducting materials. Angew Chem Int Ed, 2016, 55: 10667–10671

    Article  CAS  Google Scholar 

  14. Zou XN, Zhang D, Xie Y, et al. High enhancement in proton conductivity by incorporating sulfonic acids into a zirconium-based metal-organic framework via “click” reaction. Inorg Chem, 2021, 60: 10089–10094

    Article  CAS  Google Scholar 

  15. Zhang D, Gao Y, Luan TX, et al. Facile construction of a click-based robust porous organic polymer and its in-situ sulfonation for proton conduction. Microporous Mesoporous Mater, 2021, 325: 111348

    Article  CAS  Google Scholar 

  16. Mauritz KA, Moore RB. State of understanding of Nafion. Chem Rev, 2004, 104: 4535–4586

    Article  CAS  Google Scholar 

  17. Wu X, Wang X, He G, et al. Differences in water sorption and proton conductivity between Nafion and SPEEK. J Polym Sci B Polym Phys, 2011, 49: 1437–1445

    Article  CAS  Google Scholar 

  18. Karimi MB, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int J Hydrogen Energy, 2019, 44: 28919–28938

    Article  CAS  Google Scholar 

  19. Cote AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science, 2005, 310: 1166–1170

    Article  CAS  Google Scholar 

  20. Ma T, Kapustin EA, Yin SX, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 2018, 361: 48–52

    Article  CAS  Google Scholar 

  21. Li Z, He T, Gong Y, et al. Covalent organic frameworks: Pore design and interface engineering. Acc Chem Res, 2020, 53: 1672–1685

    Article  CAS  Google Scholar 

  22. Liang RR, Jiang SY, A RH, et al. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem Soc Rev, 2020, 49: 3920–3951

    Article  CAS  Google Scholar 

  23. Medina DD, Sick T, Bein T. Photoactive and conducting covalent organic frameworks. Adv Energy Mater, 2017, 7: 1700387

    Article  Google Scholar 

  24. Haug WK, Moscarello EM, Wolfson ER, et al. The luminescent and photophysical properties of covalent organic frameworks. Chem Soc Rev, 2020, 49: 839–864

    Article  CAS  Google Scholar 

  25. Han X, Yuan C, Hou B, et al. Chiral covalent organic frameworks: Design, synthesis and property. Chem Soc Rev, 2020, 49: 6248–6272

    Article  CAS  Google Scholar 

  26. Ding SY, Wang W. Covalent organic frameworks (COFs): From design to applications. Chem Soc Rev, 2013, 42: 548–568

    Article  CAS  Google Scholar 

  27. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science, 2017, 355: 6328

    Article  Google Scholar 

  28. Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: Chemistry beyond the structure. J Am Chem Soc, 2019, 141: 1807–1822

    Article  CAS  Google Scholar 

  29. Li X, Cai S, Sun B, et al. Chemically robust covalent organic frameworks: Progress and perspective. Matter, 2020, 3: 1507–1540

    Article  Google Scholar 

  30. Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 capture. Adv Mater, 2016, 28: 2855–2873

    Article  CAS  Google Scholar 

  31. Karak S, Dey K, Torris A, et al. Inducing disorder in order: Hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J Am Chem Soc, 2019, 141: 7572–7581

    Article  CAS  Google Scholar 

  32. Li Y, Song X, Zhang G, et al. Cobalt sandwich complex-based covalent organic frameworks for chemical fixation of CO2. Sci China Mater, 2022, 65: 1377–1382

    Article  CAS  Google Scholar 

  33. Wang JC, Kan X, Shang JY, et al. Catalytic asymmetric synthesis of chiral covalent organic frameworks from prochiral monomers for heterogeneous asymmetric catalysis. J Am Chem Soc, 2020, 142: 16915–16920

    Article  CAS  Google Scholar 

  34. Wu X, Han X, Xu Q, et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J Am Chem Soc, 2019, 141: 7081–7089

    Article  CAS  Google Scholar 

  35. Evans AM, Bradshaw NP, Litchfield B, et al. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv Mater, 2020, 32: 2004205

    Article  CAS  Google Scholar 

  36. Kong L, Zhong M, Shuang W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem Soc Rev, 2020, 49: 2378–2407

    Article  CAS  Google Scholar 

  37. Chen YJ, Zhuo HY, Pan Y, et al. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci China Mater, 2021, 64: 1939–1951

    Article  CAS  Google Scholar 

  38. Zhang L, Wang S, Zhou Y, et al. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed, 2019, 58: 14213–14218

    Article  CAS  Google Scholar 

  39. Luan TX, Du L, Wang JR, et al. Highly effective generation of singlet oxygen by an imidazole-linked robust photosensitizing covalent organic framework. ACS Nano, 2022, 16: 21565–21575

    Article  CAS  Google Scholar 

  40. Meng X, Wang HN, Song SY, et al. Proton-conducting crystalline porous materials. Chem Soc Rev, 2017, 46: 464–480

    Article  CAS  Google Scholar 

  41. Ye Y, Zhang L, Peng Q, et al. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J Am Chem Soc, 2015, 137: 913–918

    Article  CAS  Google Scholar 

  42. Ranjeesh KC, Illathvalappil R, Veer SD, et al. Imidazole-linked crystalline two-dimensional polymer with ultrahigh proton-conductivity. J Am Chem Soc, 2019, 141: 14950–14954

    Article  CAS  Google Scholar 

  43. Wu X, Hong Y, Xu B, et al. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J Am Chem Soc, 2020, 142: 14357–14364

    Article  CAS  Google Scholar 

  44. Yang Y, He X, Zhang P, et al. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew Chem Int Ed, 2020, 59: 3678–3684

    Article  CAS  Google Scholar 

  45. Wang Z, Yang Y, Zhao Z, et al. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat Commun, 2021, 12: 1982

    Article  CAS  Google Scholar 

  46. Li J, Wang J, Wu Z, et al. Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks via confinement and activation. Angew Chem Int Ed, 2021, 60: 12918–12923

    Article  CAS  Google Scholar 

  47. Moreau F, Kolokolov DI, Stepanov AG, et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. Proc Natl Acad Sci USA, 2017, 114: 3056–3061

    Article  CAS  Google Scholar 

  48. Li K, Xu Z, Deng H, et al. Dimeric cycloparaphenylenes with a rigid aromatic linker. Angew Chem Int Ed, 2021, 60: 7649–7653

    Article  CAS  Google Scholar 

  49. Che S, Fang L. Porous ladder polymer networks. Chem, 2020, 6: 2558–2590

    Article  CAS  Google Scholar 

  50. Kou Y, Xu Y, Guo Z, et al. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew Chem Int Ed, 2011, 50: 8753–8757

    Article  CAS  Google Scholar 

  51. Mahmood J, Kim SJ, Noh HJ, et al. A robust 3D cage-like ultra-microporous network structure with high gas-uptake capacity. Angew Chem Int Ed, 2018, 57: 3415–3420

    Article  CAS  Google Scholar 

  52. Guo J, Xu Y, Jin S, et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat Commun, 2013, 4: 2736

    Article  Google Scholar 

  53. Wang M, Ballabio M, Wang M, et al. Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J Am Chem Soc, 2019, 141: 16810–16816

    Article  CAS  Google Scholar 

  54. Kuehl VA, Yin J, Duong PHH, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J Am Chem Soc, 2018, 140: 18200–18207

    Article  CAS  Google Scholar 

  55. Jhulki S, Kim J, Hwang IC, et al. Solution-processable, crystalline π-conjugated two-dimensional polymers with high charge carrier mobility. Chem, 2020, 6: 2035–2045

    Article  CAS  Google Scholar 

  56. Feng J, Ren WX, Kong F, et al. Nanoscale covalent organic framework for the low-temperature treatment of tumor growth and lung metastasis. Sci China Mater, 2022, 65: 1122–1133

    Article  CAS  Google Scholar 

  57. Liu L, Yin L, Cheng D, et al. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew Chem Int Ed, 2021, 60: 14875–14880

    Article  CAS  Google Scholar 

  58. Liang Y, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater, 2017, 16: 841–848

    Article  CAS  Google Scholar 

  59. Liu Y, Shan T, Yao L, et al. Isomers of pyrene-imidazole compounds: Synthesis and configuration effect on optical properties. Org Lett, 2015, 17: 6138–6141

    Article  CAS  Google Scholar 

  60. Jiang G, Zou W, Ou Z, et al. Tuning the interlayer interactions of 2D covalent organic frameworks enables an ultrastable platform for anhydrous proton transport. Angew Chem Int Ed, 2022, 61: e202208086

    Article  CAS  Google Scholar 

  61. Hao L, Jia S, Qiao X, et al. Pore geometry and surface engineering of covalent organic frameworks for anhydrous proton conduction. Angew Chem Int Ed, 2023, 62: e202217240

    Article  CAS  Google Scholar 

  62. Zhong H, Fu Z, Taylor JM, et al. Inorganic acid-impregnated covalent organic gels as high-performance proton-conductive materials at subzero temperatures. Adv Funct Mater, 2017, 27: 1701465

    Article  Google Scholar 

  63. Tao S, Zhai L, Dinga Wonanke AD, et al. Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat Commun, 2020, 11: 1981

    Article  CAS  Google Scholar 

  64. Cao L, Wu H, Cao Y, et al. Weakly humidity-dependent proton-conducting COF membranes. Adv Mater, 2020, 32: 2005565

    Article  Google Scholar 

  65. Cai L, Hu C, Liu S, et al. A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. Sci China Mater, 2021, 64: 488–497

    Article  CAS  Google Scholar 

  66. Chandra S, Kundu T, Kandambeth S, et al. Phosphoric acid loaded azo (–N=N–) based covalent organic framework for proton conduction. J Am Chem Soc, 2014, 136: 6570–6573

    Article  CAS  Google Scholar 

  67. Materials Studio, ver. 7.0, Accelrys Inc., San Diego, CA

  68. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57: 603–619

    Article  CAS  Google Scholar 

  69. Agmon N. The Grotthuss mechanism. Chem Phys Lett, 1995, 244: 456–462

    Article  CAS  Google Scholar 

  70. Hou GL, Wang XB. Molecular specificity and proton transfer mechanisms in aerosol prenucleation clusters relevant to new particle formation. Acc Chem Res, 2020, 53: 2816–2827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “Qilu Young Talent Scholar” program (11190088963032) of Shandong University and the Carbon Neutrality Research Institute Funds (CNIF20230101 and CNIF20230202). Luan T thanks the Wynca Group for its “Chem is Try” Innovation Fund (11190047102082) under “Xin’An Cup” program. We thank the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University for the structure analyses.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Luan TX performed the major part of the experiments. Wang Q, Kong S and Feng Y participated in the experiments and discussion. Luan TX, Zhang P, Yuan S and Li PZ designed the project, discussed and analyzed the data, interpreted the results and jointly wrote the paper.

Corresponding author

Correspondence to Pei-Zhou Li  (李培洲).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Tianxiang Luan is now a postdoctor at Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Centre for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University. He received his PhD degree from the School of Chemistry and Chemical Engineering, Shandong University in 2023. His current research interest focuses on the syntheses and applications of advanced functional porous materials.

Peizhou Li is now a professor at the School of Chemistry and Chemical Engineering, Shandong University, China. He obtained his PhD degree in applied chemistry at Kobe University (AIST, Kansai center) in 2012. After that, he worked as a research fellow at Nanyang Technological University, Singapore. In November 2017, he joined Shandong University as a full professor. His current research interests mainly focus on the construction and application of framework porous materials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, TX., Wang, Q., Zhang, P. et al. Remarkably enhancing proton conductivity by intrinsic surface sulfonation of a pyrazine-linked covalent organic framework. Sci. China Mater. 67, 125–133 (2024). https://doi.org/10.1007/s40843-023-2685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2685-5

Keywords

Navigation