Skip to main content
Log in

Sandwiched MXene/polyimide composite foams for multiscale microwave absorption

具有三明治结构的MXene/聚酰亚胺复合泡沫用于多 尺度微波吸收

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Constructing three-dimensional (3D) porous structures is an effective method to improve microwave absorbing performance due to the multiple reflections. However, in traditional 3D porous structures, multiple reflections only occur within the pores. Promoting multiple reflections beyond the pores should further improve the absorbing performance. Herein, a 3D porous composite foam with sandwiched cell walls was developed to boost multiple reflections in both the submillimeter-scale pores and the submicron-scale cell walls, achieving multiscale microwave absorption. Polydopamine (PDA)-modified polyimide foam (PIF) was used as the 3D porous skeleton. The cell walls of the PDA@PIF were sandwiched by Ti3C2Tx MXene. The resulting Ti3C2Tx@PDA@PIF can absorb over 90% of the incident microwave over the whole X band, which is contributed by multiscale multiple reflections, conduction loss, and interfacial polarization. Meanwhile, the composite foam exhibits excellent flexibility and a low density of ∼30 mg cm−3. This work offers a realistic approach for lightweight, flexible, and broadband microwave absorbers, enriching the structures for effective electromagnetic protection.

摘要

三维多孔结构可促进电磁波在材料内部的多重反射, 是提升微 波吸收性能的有效方法. 然而, 传统的三维多孔结构中, 多重反射仅发 生在孔内. 扩大多重反射的范围应能进一步提升材料的吸收性能. 因此, 本文开发了一种孔壁为三明治结构的三维多孔复合泡沫, 在亚毫米尺 度孔和亚微米尺度孔壁中同时发生多重反射, 实现多尺度微波吸收. 本 研究采用聚多巴胺修饰的聚酰亚胺泡沫(PDA@PIF)作为三维多孔骨架, 在其孔壁表面负载Ti3C2Tx. 所得的Ti3C2Tx@PDA@PIF能够在整个X波 段吸收超过90%的入射波. 这得益于多尺度多重反射、电导损耗和界 面极化. 同时, 该复合泡沫具有优异的柔性和低密度(∼30 mg cm−3). 该 工作为实现轻质、柔性、宽频的吸波材料提供了一种可行的方法, 丰 富了电磁防护的有效结构.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Han M, Zhang D, Shuck CE, et al. Electrochemically modulated interaction of MXenes with microwaves. Nat Nanotechnol, 2023, 18: 373–379

    Article  CAS  Google Scholar 

  2. Li B, Yang Y, Wu N, et al. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano, 2022, 16: 19293–19304

    Article  CAS  Google Scholar 

  3. Li B, Wu N, Wu Q, et al. From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional e-textiles in extreme environments. Adv Funct Mater, 2023, 33: 2307301

    Article  CAS  Google Scholar 

  4. Li B, Wu N, Yang Y, et al. Graphene oxide-assisted multiple cross-linking of mxene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv Funct Mater, 2023, 33: 2213357

    Article  CAS  Google Scholar 

  5. Zhang Y, Ruan K, Guo Y, et al. Recent advances of MXenes-based optical functional materials. Adv Photonics Res, 2023, 4: 2300224

    Article  Google Scholar 

  6. Zhao J, Gu Z, Zhang Q. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res, 2023, doi:https://doi.org/10.1007/s12274-023-6090-3

  7. Jiang Z, Gao Y, Pan Z, et al. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J Mater Sci Tech, 2024, 174: 195–203

    Article  Google Scholar 

  8. Kim SH, Lee SY, Zhang Y, et al. Carbon-based radar absorbing materials toward stealth technologies. Adv Sci, 2023, 10: 2303104

    Article  CAS  Google Scholar 

  9. Li M, Zhu W, Li X, et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv Sci, 2022, 9: 2201118

    Article  CAS  Google Scholar 

  10. Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353: 1137–1140

    Article  CAS  Google Scholar 

  11. Han M, Shuck CE, Rakhmanov R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano, 2020, 14: 5008–5016

    Article  CAS  Google Scholar 

  12. Liu TT, Cao WQ, Yuan Q, et al. Engineering multi-relaxation interfaces in Ti3C2Tx for reducing wideband radar cross section. 2D Mater, 2023, 10: 035017

    Article  Google Scholar 

  13. Fang YS, Yuan J, Liu TT, et al. Clipping electron transport and polarization relaxation of Ti3C2Tx based nanocomposites towards multifunction. Carbon, 2023, 201: 371–380

    Article  CAS  Google Scholar 

  14. Guo Y, Ruan K, Wang G, et al. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull, 2023, 68: 1195–1212

    Article  CAS  Google Scholar 

  15. Feng W, Luo H, Wang Y, et al. Ti3C2 MXene: A promising microwave absorbing material. RSC Adv, 2018, 8: 2398–2403

    Article  CAS  Google Scholar 

  16. Han M, Shuck CE, Singh A, et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Rep Phys Sci, 2022, 3: 101073

    Article  CAS  Google Scholar 

  17. Xu H, Yin X, Li X, et al. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces, 2019, 11: 10198–10207

    Article  CAS  Google Scholar 

  18. Li X, Yin X, Song C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater, 2018, 28: 1803938

    Article  Google Scholar 

  19. Zeng ZH, Wu N, Wei JJ, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett, 2022, 14: 59

    Article  CAS  Google Scholar 

  20. Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano, 2021, 15: 6622–6632

    Article  CAS  Google Scholar 

  21. Wu N, Yang Y, Wang C, et al. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv Mater, 2023, 35: 2207969

    Article  CAS  Google Scholar 

  22. Zhang Y, Ruan K, Zhou K, et al. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater, 2023, 35: 2211642

    Article  CAS  Google Scholar 

  23. Zhang Y, Ruan K, Gu J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small, 2021, 17: 2101951

    Article  CAS  Google Scholar 

  24. Wei C, Shi L, Li M, et al. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J Mater Sci Tech, 2024, 175: 194–203

    Article  Google Scholar 

  25. Cheng Y, Li X, Qin Y, et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci Adv, 2021, 7: 1663

    Article  Google Scholar 

  26. Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    Article  CAS  Google Scholar 

  27. Hong S, Na YS, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater, 2012, 22: 4711–4717

    Article  CAS  Google Scholar 

  28. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014, 114: 5057–5115

    Article  CAS  Google Scholar 

  29. Zhao X, Zha XJ, Tang LS, et al. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res, 2019, 13: 255–264

    Article  Google Scholar 

  30. Zhang Y, Pan L, Zhang P, et al. Gradient multilayer design of Ti3C2Tx MXene nanocomposite for strong and broadband microwave absorption. Small Sci, 2022, 2: 2200018

    Article  CAS  Google Scholar 

  31. Liang J, Chen J, Shen H, et al. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem Mater, 2021, 33: 1789–1798

    Article  CAS  Google Scholar 

  32. Chen JH, Dou LM, Shen RF. AT 2019avd: A tidal disruption event with a two-phase evolution. Astrophys J, 2022, 928: 63

    Article  Google Scholar 

  33. Zhang Y, Hu R, Zhang P, et al. Gravity-induced single-layer gradient structure of Ni@Ti3C2Tx/PVA for enhanced microwave absorption. J Mater Chem A, 2023, 11: 5873–5882

    Article  CAS  Google Scholar 

  34. Yang Y, Han M, Liu W, et al. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res, 2022, 15: 9614–9630

    Article  Google Scholar 

  35. Zhang X, Tian XL, Qin Y, et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano, 2023, 17: 12510–12518

    Article  CAS  Google Scholar 

  36. Zhang R, Li B, Yang Y, et al. Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Res, 2023, 16: 7931–7940

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52201242), the Natural Science Foundation of Jiangsu Province (BK20200386), and the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang Y designed the work and engineered the samples; Zhang Y performed the experiments with support from Hu R; Zhang Y performed the data analysis; Zhang Y wrote the paper with support from Han M and Pan L; Zhang Y, Han M, and Zhang P contributed to the theoretical analysis; Pan L and Sun ZM supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Long Pan  (潘龙) or ZhengMing Sun  (孙正明).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yajun Zhang received her Master’s degree from Northwestern Polytechnical University (NPU) in 2015. Now she is a PhD student at Southeast University. Her research interest focuses on the design and fabrication of microwave absorbing materials.

Long Pan earned his PhD degree from Tsinghua University under the supervision of Prof. Xu-Ming Xie. He worked as a postdoc with Prof. Markus Niederberger at the Laboratory for Multifunctional Materials at ETH Zurich, Switzerland. He is now an associate professor at Southeast University. His current research interests are (1) clean and efficient liquid exfoliation of 2D materials; (2) self-assembly based on 2D nanosheets; (3) energy storage materials and devices; and (4) microwave absorbing materials.

ZhengMing Sun is a chief professor at Southeast University. He acted as Dean of the School of Materials Science and Engineering. His current research interests include the fundamental theory and application of metals, ceramics, intermetallic compounds, and composites in energy and environment.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, M., Hu, R. et al. Sandwiched MXene/polyimide composite foams for multiscale microwave absorption. Sci. China Mater. 67, 272–278 (2024). https://doi.org/10.1007/s40843-023-2682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2682-3

Keywords

Navigation