Skip to main content
Log in

Reduction in the temperature coefficient of photovoltaic efficiency in all-polymer solar cells using molecular order

降低全聚合物太阳能电池光伏效率的温度依赖性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Controlling the phase morphology of photoactive layers toward satisfactory charge transport with reduced energetic disorder is the key to obtaining targeted efficiencies in organic solar cells (OSCs). On the basis of an all-polymer model system, i.e., PM6/PYF-T-o, we investigated the effects of phase morphology on temperature-dependent charge carrier transport and photovoltaic behavior in all-polymer solar cells prepared through a layer-by-layer (LBL) process. The combined in-situ spectroscopic and morphological analyses reveal that the formation of a fibril structure during the self-assembly of donor molecules and the favorable pure phase of a polymeric acceptor component could promote charge transport. Such morphological features reduce the thermal activation energy (Ea) for the carriers. The LBL-processed PM6/PYF-T-o solar cells exhibit a surprisingly small temperature coefficient of power conversion efficiency (PCE), i.e., upon cooling the device to 215 K, the PCE remains at 94.0% of the value at ambient room temperature (RT = 298 K) (PCE of 15.65% at 215 K and 16.70% at RT). This study offers an attractive approach for mediating carrier transport and photovoltaic performance in OSCs toward applications in a temperature-variable environment.

摘要

全聚合物太阳能电池(All-PSCs)具有良好的机械稳定性和热稳 定性, 受到人们的广泛关注. 目前, 提高全聚合物太阳能电池性能的关 键是改善活性层的形貌. 本文通过逐层(LBL)工艺, 优化了薄膜形貌, 实 现了更好的电荷产生和传输, 增加了激子扩散长度, 提高了电荷产量并抑制了复合损失. 此外, 本文进一步研究了LBL制备的全聚合物太阳 能电池中的激子/电荷行为与温度的依赖性关系. 详细的原位光谱测量 和光电特性表征表明, 独特的形态延长了激子寿命, 减少了电荷陷阱并促进了电荷传输和收集. 因此, 准双层PM6/PYF-T-o器件的能量转换 效率(PCE)显著提高(16.70%). 此外, 与BHJ器件相比, 通过LBL工艺制备 的器件, 实现了增强的分子有序性, 降低了能级混乱度, 使得器件填充 系数和PCE温度依赖性减弱. 本工作为太阳能电池在温度可变环境下 的电荷传输行为和光伏性能提供了新的认识, 也为其实际应用提供了 理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5: 1548–1565

    Article  CAS  Google Scholar 

  2. Zhou D, Liao C, Peng S, et al. Binary blend all-polymer solar cells with a record efficiency of 17.41% enabled by programmed fluorination both on donor and acceptor blocks. Adv Sci, 2022, 9: 2202022

    Article  CAS  Google Scholar 

  3. Wan Q, Seo S, Lee SW, et al. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer. J Am Chem Soc, 2023, 145: 11914–11920

    Article  CAS  Google Scholar 

  4. Fan Q, Su W, Chen S, et al. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4: 658–672

    Article  CAS  Google Scholar 

  5. Wu B, Yin B, Duan C, et al. All-polymer solar cells. J Semicond, 2021, 42: 080301

    Article  CAS  Google Scholar 

  6. Wu Y, Fan Q, Fan B, et al. Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells. ACS Energy Lett, 2022, 7: 2196–2202

    Article  CAS  Google Scholar 

  7. Zhang J, Tan CH, Zhang K, et al. n-extended conjugated polymer acceptor containing thienylene-vinylene-thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv Energy Mater, 2021, 11: 2102559

    Article  CAS  Google Scholar 

  8. Zhang W, Sun C, Angunawela I, et al. 16.52% Efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness. Adv Mater, 2022, 34: 2108749

    Article  CAS  Google Scholar 

  9. Yu H, Luo S, Sun R, et al. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv Funct Mater, 2021, 31: 2100791

    Article  CAS  Google Scholar 

  10. Cai Y, Li Q, Lu G, et al. Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat Commun, 2022, 13: 2369

    Article  CAS  Google Scholar 

  11. Li D, Deng N, Fu Y, et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv Mater, 2023, 35: 2208211

    Article  CAS  Google Scholar 

  12. Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21: 656–663

    Article  CAS  Google Scholar 

  13. Wei Y, Chen Z, Lu G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv Mater, 2022, 34: 2204718

    Article  CAS  Google Scholar 

  14. Li S, He C, Chen T, et al. Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy Environ Sci, 2023, 16: 2262–2273

    Article  CAS  Google Scholar 

  15. Xu W, Zhang M, Ma X, et al. Over 17.4% efficiency of layer-by-layer all-polymer solar cells by improving exciton utilization in acceptor layer. Adv Funct Mater, 2023, 33: 2215204

    Article  CAS  Google Scholar 

  16. Zhao C, Yi J, Wang L, et al. An improved performance of all polymer solar cells enabled by sequential processing via non-halogenated solvents. Nano Energy, 2022, 104: 107872

    Article  CAS  Google Scholar 

  17. Li Y, Song J, Dong Y, et al. Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7%. Adv Mater, 2022, 34: 2110155

    Article  CAS  Google Scholar 

  18. Liang S, Lou Z, Zhang Q, et al. Improved hole transfer and charge generation in all-polymer photovoltaic blends with a P–i–N structure. J Phys Chem C, 2020, 124: 25262–25269

    Article  CAS  Google Scholar 

  19. Liu Z, Ma X, Xu W, et al. 15.28% Efficiency of conventional layer-by-layer all-polymer solar cells superior to bulk heterojunction or inverted cells. Chem Eng J, 2022, 450: 138146

    Article  CAS  Google Scholar 

  20. Xu Y, Yuan J, Liang S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a P–i–N architecture. ACS Energy Lett, 2019, 4: 2277–2286

    Article  CAS  Google Scholar 

  21. Lee C, Kang H, Lee W, et al. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: The importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater, 2015, 27: 2466–2471

    Article  CAS  Google Scholar 

  22. Li B, Zhang X, Wu Z, et al. Over 16% efficiency all-polymer solar cells by sequential deposition. Sci China Chem, 2022, 65: 1157–1163

    Article  CAS  Google Scholar 

  23. Benten H, Mori D, Ohkita H, et al. Recent research progress ofpolymer donor/polymer acceptor blend solar cells. J Mater Chem A, 2016, 4: 5340–5365

    Article  CAS  Google Scholar 

  24. Xie B, Zhang K, Hu Z, et al. Polymer pre-aggregation enables optimal morphology and high performance in all-polymer solar cells. Sol RRL, 2020, 4: 1900385

    Article  CAS  Google Scholar 

  25. Li S, Jiang T, Zhang H, et al. Nonhalogenated solution-processed donor-dispersed planar heterojunction organic solar cells with enhanced homogeneity in vertical phase separation. Sol RRL, 2023, 7: 2201011

    Article  CAS  Google Scholar 

  26. Jiang K, Zhang J, Peng Z, et al. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat Commun, 2021, 12: 468

    Article  CAS  Google Scholar 

  27. Dou C, Long X, Ding Z, et al. An electron-deficient building block based on the B←N unit: An electron acceptor for all-polymer solar cells. Angew Chem Int Ed, 2016, 55: 1436–1440

    Article  CAS  Google Scholar 

  28. Feng K, Huang J, Zhang X, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv Mater, 2020, 32: 2001476

    Article  CAS  Google Scholar 

  29. Fan Q, Fu H, Wu Q, et al. Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15 % efficiency and high reproducibility. Angew Chem Int Ed, 2021, 60: 15935–15943

    Article  CAS  Google Scholar 

  30. Wang T, Sun R, Yang XR, et al. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells. Chin J Polym Sci, 2022, 40: 877–888

    Article  CAS  Google Scholar 

  31. Peng F, An K, Zhong W, et al. A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Lett, 2020, 5: 3702–3707

    Article  CAS  Google Scholar 

  32. Zhang Y, Wu B, He Y, et al. Layer-by-layer processed binary allpolymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy, 2022, 93: 106858

    Article  CAS  Google Scholar 

  33. Chen D, Liu S, Huang B, et al. Rational regulation of the molecular aggregation enables a facile blade-coating process of large-area allpolymer solar cells with record efficiency. Small, 2022, 18: 2200734

    Article  CAS  Google Scholar 

  34. Zhang L, Jia T, Pan L, et al. 15.4% Efficiency all-polymer solar cells. Sci China Chem, 2021, 64: 408–412

    Article  CAS  Google Scholar 

  35. Wu Q, Wang W, Wu Y, et al. Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells. Natl Sci Rev, 2022, 9: nwab151

    Article  CAS  Google Scholar 

  36. Fu H, Fan Q, Gao W, et al. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Sci China Chem, 2022, 65: 309–317

    Article  CAS  Google Scholar 

  37. Fan Q, Fu H, Luo Z, et al. Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%. Nano Energy, 2022, 92: 106718

    Article  CAS  Google Scholar 

  38. Liu B, Sun H, Lee JW, et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ Sci, 2021, 14: 4499–4507

    Article  CAS  Google Scholar 

  39. Cui FZ, Chen ZH, Qiao JW, et al. Ternary-assisted sequential solution deposition enables efficient all-polymer solar cells with tailored vertical-phase distribution. Adv Funct Mater, 2022, 32: 2200478

    Article  CAS  Google Scholar 

  40. Liao C, Gong Y, Xu X, et al. Cost-efficiency balanced polymer acceptors based on lowly fused dithienopyrrolo[3,2b]benzothiadiazole for 16.04% efficiency all-polymer solar cells. Chem Eng J, 2022, 435: 134862

    Article  CAS  Google Scholar 

  41. Liu T, Yang T, Ma R, et al. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5: 914–930

    Article  CAS  Google Scholar 

  42. Li Q, Jia T, Wang LM, et al. Superior layer-by-layer deposition realizing P-i-N all-polymer solar cells with efficiency over 16% and fill factor over 77%. J Mater Chem A, 2022, 10: 10880–10891

    Article  CAS  Google Scholar 

  43. Yu H, Wang Y, Kim HK, et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency. Adv Mater, 2022, 34: 2200361

    Article  CAS  Google Scholar 

  44. Jia J, Huang Q, Jia T, et al. Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%. Adv Energy Mater, 2022, 12: 2103193

    Article  CAS  Google Scholar 

  45. Du J, Hu K, Zhang J, et al. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat Commun, 2021, 12: 5264

    Article  CAS  Google Scholar 

  46. Sun Y, Ma R, Kan Y, et al. Simultaneously enhanced efficiency and mechanical durability in ternary solar cells enabled by low-cost incompletely separated fullerenes. Macromol Rapid Commun, 2022, 43: 2200139

    Article  CAS  Google Scholar 

  47. Sun H, Liu B, Ma Y, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells. Adv Mater, 2021, 33: 2102635

    Article  CAS  Google Scholar 

  48. Ma S, Li B, Gong S, et al. Biselenophene imide: Enabling polymer acceptor with high electron mobility for high-performance all-polymer solar cells. Angew Chem Int Ed, 2023, 62: e202308306

    Article  CAS  Google Scholar 

  49. Zhang X, Zhang D, Zhou Q, et al. Fluorination with an enlarged dielectric constant prompts charge separation and reduces bimolecular recombination in non-fullerene organic solar cells with a high fill factor and efficiency > 13%. Nano Energy, 2019, 56: 494–501

    Article  CAS  Google Scholar 

  50. Bai X, Zong K, Ly J, et al. Orientation control of solution-processed organic semiconductor crystals to improve out-of-plane charge mobility. Chem Mater, 2017, 29: 7571–7578

    Article  CAS  Google Scholar 

  51. Kang H, Zhang X, Xu X, et al. Strongly reduced non-radiative voltage losses in organic solar cells prepared with sequential film deposition. J Phys Chem Lett, 2021, 12: 10663–10670

    Article  CAS  Google Scholar 

  52. Xie S, Xia Y, Zheng Z, et al. Effects of nonradiative losses at charge transfer states and energetic disorder on the open-circuit voltage in nonfullerene organic solar cells. Adv Funct Mater, 2018, 28: 1705659

    Article  Google Scholar 

  53. Sakanoue T, Sirringhaus H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat Mater, 2010, 9: 736–740

    Article  CAS  Google Scholar 

  54. Speirs MJ, Dirin DN, Abdu-Aguye M, et al. Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy Environ Sci, 2016, 9: 2916–2924

    Article  CAS  Google Scholar 

  55. Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  Google Scholar 

  56. Yu H, Pan M, Sun R, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2 % efficiency. Angew Chem Int Ed, 2021, 60: 10137–10146

    Article  CAS  Google Scholar 

  57. Shi Y, Chang Y, Lu K, et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat Commun, 2022, 13: 3256

    Article  CAS  Google Scholar 

  58. Baran D, Gasparini N, Wadsworth A, et al. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nat Commun, 2018, 9: 2059

    Article  Google Scholar 

  59. Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  60. Wang Y, Wang X, Lin B, et al. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv Energy Mater, 2020, 10: 2000826

    Article  CAS  Google Scholar 

  61. Lee JW, Phan TNL, Oh ES, et al. Carboxylate-containing poly(thiophene vinylene) derivative with controlled molecular weights for high-performance intrinsically-stretchable organic solar cells. Adv Funct Mater, 2023, 2305851

  62. Constantinou I, Yi X, Shewmon NT, et al. Effect of polymer-fullerene interaction on the dielectric properties of the blend. Adv Energy Mater, 2017, 7: 1601947

    Article  Google Scholar 

  63. Zhang T, Zhao X, Yang D, et al. Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv Energy Mater, 2018, 8: 1701691

    Article  Google Scholar 

  64. Zhou M, Liao C, Duan Y, et al. 19.10% Efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv Mater, 2023, 35: 2208279

    Article  CAS  Google Scholar 

  65. Li M, Li J, Yu L, et al. Trap-filling of ZnO buffer layer for improved efficiencies of organic solar cells. Front Chem, 2020, 8: 399

    Article  CAS  Google Scholar 

  66. Zeng Y, Li D, Xiao Z, et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv Energy Mater, 2021, 11: 2101338

    Article  CAS  Google Scholar 

  67. Caironi M, Bird M, Fazzi D, et al. Very low degree of energetic disorder as the origin of high mobility in an n-channel polymer semiconductor. Adv Funct Mater, 2011, 21: 3371–3381

    Article  CAS  Google Scholar 

  68. Paulke A, Stranks SD, Kniepert J, et al. Charge carrier recombination dynamics in perovskite and polymer solar cells. Appl Phys Lett, 2016, 108: 113505

    Article  Google Scholar 

  69. Zalar P, Kuik M, Ran NA, et al. Effects of processing conditions on the recombination reduction in small molecule bulk heterojunction solar cells. Adv Energy Mater, 2014, 4: 1400438

    Article  Google Scholar 

  70. Gasparini N, Wadsworth A, Moser M, et al. The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv Energy Mater, 2018, 8: 1703298

    Article  Google Scholar 

  71. Zhang X, Li C, Xu J, et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6: 444–457

    Article  CAS  Google Scholar 

  72. Zhang X, Yao N, Wang R, et al. On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels. Nano Energy, 2020, 75: 105032

    Article  CAS  Google Scholar 

  73. Xue J, Zhao H, Lin B, et al. Nonhalogenated dual-slot-die processing enables high-efficiency organic solar cells. Adv Mater, 2022, 34: 2202659

    Article  CAS  Google Scholar 

  74. Zhu Q, Xue J, Lu G, et al. Efficient and mechanically-robust organic solar cells based on vertical stratification modulation through sequential blade-coating. Nano Energy, 2022, 97: 107194

    Article  CAS  Google Scholar 

  75. Shen YF, Zhang H, Zhang J, et al. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv Mater, 2023, 35: 2209030

    Article  CAS  Google Scholar 

  76. Zhang J, Zhang L, Wang X, et al. Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv Energy Mater, 2022, 12: 2200165

    Article  CAS  Google Scholar 

  77. Cai J, Fu Y, Guo C, et al. Realizing compact three-dimensional charge transport networks of asymmetric electron acceptors for efficient organic solar cells. Sci China Chem, 2023, 66: 508–517

    Article  CAS  Google Scholar 

  78. Dong Y, Cha H, Bristow HL, et al. Correlating charge-transfer state lifetimes with material energetics in polymer:non-fullerene acceptor organic solar cells. J Am Chem Soc, 2021, 143: 7599–7603

    Article  CAS  Google Scholar 

  79. Lin Y, Zhao F, Wu Y, et al. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater, 2017, 29: 1604155

    Article  Google Scholar 

  80. Bässler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Physica Status Solidi (b), 1993, 175: 15–56

    Article  Google Scholar 

  81. Blakesley JC, Neher D. Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys Rev B, 2011, 84: 075210

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22279003 and 21875012).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhou H and Zhang Y proposed this research and guided the project. Zhang W designed and performed the experiments and drafted the original manuscript. Yang R and Yue Y participated in temperature related testing characterization. Cheng Q performed the PL measurement and analyzed the results. Zhang Y, Zhang J, Xiao L and Li S performed the morphology measurement and analyzed the results. Yao G and Zhang C performed the TA measurement and analyzed the results. Zhang Y revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Huiqiong Zhou  (周惠琼) or Yuan Zhang  (张渊).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Weichao Zhang received his Master’s degree from the Inner Mongolia Normal University in 2021. He is currently a PhD student under the supervision of Prof. Yuan Zhang at the School of Chemistry, Beihang University. His research interest focuses on the fabrication and characterization of organic solar cells.

Yuan Zhang received his PhD degree from the University of Groningen, Netherlands in 2010. From 2011 to 2015, he conducted postdoctoral research at the University of California, Santa Barbara, in the United States. Currently, he serves as a professor and doctoral supervisor at the School of Chemistry, Beihang University. His research interests are focused on the physics of organic semiconductor devices and the exploration of optoelectronic conversion materials, including photovoltaics, field-effect transistors, photodetection, and electroluminescence (i.e., organic light-emitting diode).

Electronic supplementary material

40843_2023_2672_MOESM1_ESM.pdf

Supporting Information: Reduction in the Temperature Coefficient of Photovoltaic Efficiency in All-Polymer Solar Cells Using Molecular Order

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, R., Yue, Y. et al. Reduction in the temperature coefficient of photovoltaic efficiency in all-polymer solar cells using molecular order. Sci. China Mater. 67, 47–57 (2024). https://doi.org/10.1007/s40843-023-2672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2672-7

Keywords

Navigation