Skip to main content
Log in

Flexible Cu2ZnSn(S,Se)4 thin film solar cells with lithium doping via doctor blading

基于刮涂法制备锂掺杂柔性铜锌锡硫硒薄膜太阳电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Lithium doping is beneficial for enhancing the performance of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. However, the conventional doping strategy of spin-coating of the precursor ink containing Li source suffers from mass loss due to Li redissolution during the layer-by-layer deposition. In this study, we report an effective Li-doping strategy for preparing CZTSSe thin film on a flexible Mo foil substrate via the doctor-blading approach. In addition, we investigate the effect of Li doping on device performance. The grain size becomes larger with increasing Li-doping content, which could be attributed to the Li–Se liquid phase formation during the selenization process. Moreover, lithium can enter the CZTSSe lattice, and it tends to accumulate on the surface, passivating the defects and improving the functionality of the p–n junction. Thus, an appropriate Li-doping content enhances device performance. Furthermore, the strategy of codoping with Li and Na is preliminarily explored. Interestingly, the results reveal that introducing Na enhances the Raman signal of S vibration at 328 cm−1 compared with that of the 10%-Li sample. The efficiency of the flexible CZTSSe solar cells is further improved to 7.59%. Thus, this work provides a simple and effective strategy for Li doping via the doctor-blading method and demonstrates the interplaying mechanism between the codoped Li and Na.

摘要

锂掺杂有利于提高铜锌锡硫硒薄膜太阳电池的性能. 然而, 传统旋涂含锂前驱体溶液的掺杂策略在前驱膜的逐层沉积过程中, 由于锂的再溶解而导致大量的锂流失. 在本工作中, 我们通过刮涂法在柔性钼箔衬底上制备了铜锌锡硫硒薄膜, 实现锂的有效掺杂, 并进一步研究了锂掺杂对器件性能的影响. 随着锂掺杂含量的增加, 吸收层晶粒尺寸变大, 这可能与硒化过程中锂–硒液相的形成有关. 而且, 锂可以进入铜锌锡硫硒晶格中, 并在吸收层的表面积累, 从而钝化缺陷, 提升p–n结质量. 因此, 适量的锂掺杂可以提高器件的性能. 此外, 本工作探索了锂–钠共掺的影响. 有趣的是, 与Li-10%样品相比, 钠元素的引入增强了吸收层拉曼光谱在328 cm−1处硫的振动信号. 10%锂钠共掺可将柔性Cu2ZnSn(S,Se)4 薄膜太阳电池的效率进一步从6.62%提高到7.59%. 本工作提供了一种基于刮涂法、简单有效的锂掺杂策略, 并证明了锂–钠共掺存在相互作用机制.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giraldo S, Jehl Z, Placidi M, et al. Progress and perspectives of thin film kesterite photovoltaic technology: A critical review. Adv Mater, 2019, 31: 1806692.1806691

    Article  Google Scholar 

  2. Sahu M, Minnam Reddy VR, Park C, et al. Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance. Sol Energy, 2021, 230: 13–58

    Article  CAS  Google Scholar 

  3. Wang P, Wu Y, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: Progress and challenges. Adv Funct Mater, 2019, 29: 1807661

    Article  CAS  Google Scholar 

  4. Gour KS, Karade V, Babar P, et al. Potential role of kesterites in development of earth-abundant elements-based next generation technology. Sol RRL, 2021, 5: 2000815

    Article  CAS  Google Scholar 

  5. Gong Y, Zhang Y, Jedlicka E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci China Mater, 2020, 64: 52–60

    Article  Google Scholar 

  6. Green MA, Dunlop ED, Yoshita M, et al. Solar cell efficiency tables (version 62). Prog Photovoltaics, 2023, 31: 651–663

    Article  Google Scholar 

  7. Xu X, Zhou J, Yin K, et al. 12.84% Efficiency flexible kesterite solar cells by heterojunction interface regulation. Adv Energy Mater, 2023, 13: 2301701

    Article  CAS  Google Scholar 

  8. Duan B, Shi J, Li D, et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: Disorder and deep defects. Sci China Mater, 2020, 63: 2371–2396

    Article  CAS  Google Scholar 

  9. Sun L, Wang W, Hao L, et al. Influence mechanism of Cd ion soaking on performance of flexible CZTSSe thin film solar cells. Mater Sci Semiconductor Processing, 2022, 138: 106301

    Article  CAS  Google Scholar 

  10. Wang S, Huang L, Ye Z, et al. Fabrication of high-efficiency Cu2(Zn,Cd)SnS4 solar cells by a rubidium fluoride assisted co-evaporation/annealing method. J Mater Chem A, 2021, 9: 25522–25530

    Article  CAS  Google Scholar 

  11. Sun Y, Guo H, Qiu P, et al. Na-doping-induced modification of the Cu2ZnSn(S,Se)4/CdS heterojunction towards efficient solar cells. J Energy Chem, 2021, 57: 618–626

    Article  CAS  Google Scholar 

  12. Xie H, López-Marino S, Olar T, et al. Impact of Na dynamics at the Cu2ZnSn(S,Se)4/CdS interface during post low temperature treatment of absorbers. ACS Appl Mater Interfaces, 2016, 8: 5017–5024

    Article  CAS  Google Scholar 

  13. Sun K, Liu F, Huang J, et al. Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Sol Energy Mater Sol Cells, 2018, 182: 14–20

    Article  CAS  Google Scholar 

  14. Xin H, Vorpahl SM, Collord AD, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Phys Chem Chem Phys, 2015, 17: 23859–23866

    Article  CAS  Google Scholar 

  15. Cabas-Vidani A, Haass SG, Andres C, et al. High-efficiency (LixCu1−x)2ZnSn(S,Se)4 kesterite solar cells with lithium alloying. Adv Energy Mater, 2018, 8: 1801191

    Article  Google Scholar 

  16. He M, Zhang X, Huang J, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment. Adv Energy Mater, 2021, 11: 2003783

    Article  CAS  Google Scholar 

  17. Shen Z, Wang S, Liu Y, et al. Li2S doping into CZTSe drives the large improvement of VOC of solar cell. J Energy Chem, 2021, 62: 637–644

    Article  CAS  Google Scholar 

  18. Guo H, Wang G, Meng R, et al. An efficient Li+-doping strategy to optimize the band alignment of a Cu2ZnSn(S,Se)4/CdS interface by a Se&LiF co-selenization process. J Mater Chem A, 2020, 8: 22065–22074

    Article  CAS  Google Scholar 

  19. Cancino-Gordillo FE, Cab JV, Pal U. Structure and transport behavior of hydrothermally grown phase pure Cu2ZnSn1−xGexS4 (x = 0.0, 0.3) nanoparticles. Appl Surf Sci, 2021, 571: 151261

    Article  Google Scholar 

  20. Chang X, Fu J, Kou D, et al. Synergistic incorporation of NaF and CsF PDT for high efficiency kesterite solar cells: Unveiling of grain interior and grain boundary effects. J Mater Chem A, 2021, 9: 413–422

    Article  CAS  Google Scholar 

  21. Rey G, Babbe F, Weiss TP, et al. Post-deposition treatment of Cu2ZnSnSe4 with alkalis. Thin Solid Films, 2017, 633: 162–165

    Article  CAS  Google Scholar 

  22. Zhou J, Xu X, Duan B, et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells. Nano Energy, 2021, 89: 106405

    Article  CAS  Google Scholar 

  23. Xu H, Ge S, Yang W, et al. 9.63% Efficient flexible Cu2ZnSn(S,Se)4 solar cells fabricated via scalable doctor-blading under ambient conditions. J Mater Chem A, 2021, 9: 25062–25072

    Article  CAS  Google Scholar 

  24. Yan Q, Sun Q, Deng H, et al. Enhancing carrier transport in flexible CZTSSe solar cells via doping Li strategy. J Energy Chem, 2022, 75: 8–15

    Article  CAS  Google Scholar 

  25. Mule A, Vermang B, Sylvester M, et al. Effect ofdifferent alkali (Li, Na, K, Rb, Cs) metals on Cu2ZnSnSe4 solar cells. Thin Solid Films, 2017, 633: 156–161

    Article  CAS  Google Scholar 

  26. Zhao X, Chang X, Kou D, et al. Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells. J Energy Chem, 2020, 50: 9–15

    Article  Google Scholar 

  27. Lin X, Madhavan VE, Kavalakkatt J, et al. Inkjet-printed CZTSSe absorbers and influence of sodium on device performance. Sol Energy Mater Sol Cells, 2018, 180: 373–380

    Article  CAS  Google Scholar 

  28. Salomé PMP, Rodriguez-Alvarez H, Sadewasser S. Incorporation of alkali metals in chalcogenide solar cells. Sol Energy Mater Sol Cells, 2015, 143: 9–20

    Article  Google Scholar 

  29. Wang Y, Lv S, Li Z. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. J Mater Sci Tech, 2022, 96: 179–189

    Article  CAS  Google Scholar 

  30. Hsieh YT, Han Q, Jiang C, et al. Efficiency enhancement of Cu2ZnSn(S,Se)4 solar cells via alkali metals doping. Adv Energy Mater, 2016, 6: 1502386

    Article  Google Scholar 

  31. Yang Y, Kang X, Huang L, et al. Tuning the band gap of Cu2ZnSn(S,Se)4 thin films via lithium alloying. ACS Appl Mater Interfaces, 2016, 8: 5308–5313

    Article  CAS  Google Scholar 

  32. Yang Y, Huang L, Pan D. New insight of Li-doped Cu2ZnSn(S,Se)4 thin films: Li-induced Na diffusion from soda lime glass by a cation-exchange reaction. ACS Appl Mater Interfaces, 2017, 9: 23878–23883

    Article  CAS  Google Scholar 

  33. Dong XF, Zheng TT, Yang FX, et al. An effective Li-containing interfacial-treating strategy for performance enhancement of air-processed CZTSSe solar cells. Sol Energy Mater Sol Cells, 2021, 227: 111102

    Article  CAS  Google Scholar 

  34. Zhang J, Zhang W, Cheng HM, et al. Critical review of recent progress of flexible perovskite solar cells. Mater Today, 2020, 39: 66–88

    Article  Google Scholar 

  35. Schnabel T, Abzieher T, Friedlmeier TM, et al. Solution-based preparation of Cu2ZnSn(S,Se)4 for solar cells—Comparison of SnSe2 and elemental Se as chalcogen source. IEEE J Photovoltaics, 2015, 5: 670–675

    Article  Google Scholar 

  36. Ge S, Xu H, Khan SN, et al. A universal and facile method of tailoring the thickness of Mo(Sx,Se1−x)2, contributing to highly efficient flexible Cu2ZnSn(S,Se)4 solar cells. Sol RRL, 2021, 5: 2100598

    Article  CAS  Google Scholar 

  37. Khan SN, Ge S, Huang Y, et al. Highly efficient Cu2ZnSn(S,Se)4 bifacial solar cell via a composition gradient strategy through the molecular ink. Sci China Mater, 2021, 65: 612–619

    Article  Google Scholar 

  38. Zhang X, Han D, Chen S, et al. First-principles study on the alkali chalcogenide secondary compounds in Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 thin film solar cells. J Energy Chem, 2018, 27: 1140–1150

    Article  Google Scholar 

  39. Gong Y, Zhu Q, Li B, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells. Nat Energy, 2022, 7: 966–977

    Article  CAS  Google Scholar 

  40. Hobson TDC, Hutter OS, Fleck N, et al. Vegard relation and Raman band reference data generated from bulk crystals of kesterite-phase composition series Cu2ZnSnS4xSe4−4x (CZTSSe, 0 ⩽x ⩽ 1). Cryst Growth Des, 2020, 20: 2164–2173

    Article  CAS  Google Scholar 

  41. Schorr S, Gurieva G, Guc M, et al. Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. J Phys Energy, 2020, 2: 012002

    Article  CAS  Google Scholar 

  42. Moser S, Tiwari AN, Carron R. Interplay between Li and Na amid codoped solution-processed Cu2ZnSn(S,Se)4 absorbers for solar cells. Sol Energy Mater Sol Cells, 2023, 250: 112094

    Article  CAS  Google Scholar 

  43. Maeda T, Kawabata A, Wada T. First-principles study on alkali-metal effect of Li, Na, and K in Cu2ZnSnS4 and Cu2ZnSnSe4. Phys Status Solidi C, 2015, 12: 631–637

    Article  CAS  Google Scholar 

  44. Ishizuka S, Taguchi N, Nishinaga J, et al. A comparative study of the effects of light and heavy alkali-halide postdeposition treatment on CuGaSe2 and Cu(In,Ga)Se2 thin-film solar cells. Sol Energy, 2020, 211: 1092–1101

    Article  CAS  Google Scholar 

  45. Reinhard P, Bissig B, Pianezzi F, et al. Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells. Chem Mater, 2015, 27: 5755–5764

    Article  CAS  Google Scholar 

  46. Jackson P, Wuerz R, Hariskos D, et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Rapid Res Ltrs, 2016, 10: 583–586

    Article  CAS  Google Scholar 

  47. Hegedus S, Shafarman W, et al. Thin-film solar cells: Device measurements and analysis. Prog Photovolt, 2004, 12: 155–176

    Article  CAS  Google Scholar 

  48. Yan Q, Cheng S, Yu X, et al. Mechanism of current shunting in flexible Cu2Zn1xCdxSn(S,Se)4 solar cells. Sol RRL, 2020, 4: 1900410

    Article  CAS  Google Scholar 

  49. Khan SN, Ge S, Gu E, et al. Bifacial Cu2ZnSn(S,Se)4 thin film solar cell based on molecular ink and rapid thermal processing. Adv Mater Inter, 2021, 8: 2100971

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic and Applied Basic Research Projects of Guangdong Province of China (2021A1515110520), the National Natural Science Foundation of China (62074168), China Postdoctoral Science Foundation (2021M703655), and the funding from the State Key Laboratory of Optoelectronic Materials and Technologies at Sun Yat-Sen University (OEMT-2022-ZTS-08). We also thank Prof. Zongcun Liang, Prof. Ruijiang Hong, Prof. Wan Yue, Prof. Zhengke Li, and Prof. Fang Yi for the facility and characterization support.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Lin X conceived and supervised the project; Xu H conducted most of the experiments and wrote the draft of the manuscript with support from all the authors; Ge S, Wang T and Gu E participated in the discussion and analysis of the data. All the authors participate in the general discussion.

Corresponding authors

Correspondence to Ening Gu  (顾鄂宁) or Xianzhong Lin  (林显忠).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Han Xu received her Master’s degree in materials physics and chemistry from Sun Yat-Sen University in 2022. Currently she is pursuing her doctoral degree at the Institute of Photoelectronic Thin Film Devices and Technology, Nankai University. Her research interest includes the synthesis and characterization of energy materials and their applications in optoelectronic devices. Her current research focuses on flexible kesterite Cu2ZnSn(S,Se)4 thin-film solar cells.

Ening Gu received her PhD degree in materials science from Friedrich-Alexander-Universität Erlangen-Nürnberg in 2019 under the supervision of Prof. Christoph J. Brabec. Currently, she works as a postdoctoral fellow at the School of Materials Science and Engineering, Sun Yat-Sen University. Her research interests focus on emerging photovoltaic materials, solution-processed optoelectronic semiconductors and devices.

Xianzhong Lin received his PhD degree from the Technische Universität Berlin, Germany, in 2014. Before joining Sun Yat-Sen University as an associate professor in 2017, he worked as a postdoctoral researcher at Helmholtz-Zentrum Berlin für Materialien und Energie and Friedrich-Alexander-Universität Erlangen-Nürnberg for three years. His research focuses on highly efficient and stable thin-film solar cells based on printing approaches.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Ge, S., Wang, T. et al. Flexible Cu2ZnSn(S,Se)4 thin film solar cells with lithium doping via doctor blading. Sci. China Mater. 67, 67–75 (2024). https://doi.org/10.1007/s40843-023-2670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2670-6

Keywords

Navigation