Skip to main content
Log in

Integrating dual photoresponsive molecules via a cocrystal strategy: photosalient effects, negative photochromism, and fluorescence enhancement

通过共晶策略整合双光响应分子: 光显著效应、负光致变色和荧光增强

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Integrating multiresponsive molecules into a single crystal is a novel attempt in the area of photomechanical crystalline materials. In this work, a photomechanical crystal (9AC-NPE; 9AC = 9-anthracenecarboxylic acid, NPE = 4-(1-naphthylvinyl) pyridine) was prepared via cocrystallization. Remarkably, this cocrystal contained two distinct photoresponsive molecules, each corresponding to undergo a unique photodimerization reaction. Although these molecules need to satisfy appropriate topological stacking criteria, both photodimerization reactions occurred under ultraviolet irradiation, contributing to the photosalient effects, negative photochromism, and fluorescence enhancement of the cocrystal. The photosalient behavior of the cocrystal under white-light irradiation prompted us to further examine the differences between the two photodimerization reactions, particularly their reaction rate and response wavelength. Furthermore, the utility of this system in optical printing was demonstrated. Therefore, this work enhances the understanding of the design and application of photomechanical crystalline materials and can serve as an important reference for future efforts in this field.

摘要

将多个响应分子整合到单晶体中是光机械晶体材料领域的一次全新尝试. 本工作通过共晶制备了首个包含两种光响应分子的光机械晶体(9AC–NPE), 每种分子都对应其独特的需要满足拓扑堆积条件的光二聚反应. 紫外光照射下成功激发了晶体中的两种光二聚反应, 同时表现出光显著效应、负光致变色和多发射峰的荧光增强. 本文还将该共晶作为一个研究平台, 比较和发现了两种光二聚反应在光反应速率和响应波长上的差异, 这为制备具有复杂光机械行为的晶体材料提供了潜在的解决方案. 此外, 还发展了该共晶在光学打印中的概念设计.本工作加深了对光机械晶体材料设计和应用的理解, 可作为该领域未来研究的重要参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature, 2003, 425: 145

    Article  CAS  Google Scholar 

  2. Li C, Iscen A, Palmer LC, et al. Light-driven expansion of spiropyran hydrogels. J Am Chem Soc, 2020, 142: 8447–8453

    Article  CAS  Google Scholar 

  3. Yu H, Ikeda T. Photocontrollable liquid-crystalline actuators. Adv Mater, 2011, 23: 2149–2180

    Article  CAS  Google Scholar 

  4. Koshima H, Hasebe S, Hagiwara Y, et al. Mechanically responsive organic crystals by light. Israel J Chem, 2021, 61: 683–696

    Article  CAS  Google Scholar 

  5. Ye Y, Hao H, Xie C. Photomechanical crystalline materials: New developments, property tuning and applications. CrystEngComm, 2022, 24: 3136–3149

    Article  CAS  Google Scholar 

  6. Zhou B, Yan D. Recent advances of dynamic molecular crystals with light-triggered macro-movements. Appl Phys Rev, 2021, 8: 041310

    Article  CAS  Google Scholar 

  7. Wu W, Chen K, Wang T, et al. Stimuli-responsive flexible organic crystals. J Mater Chem C, 2023, 11: 2026–2052

    Article  CAS  Google Scholar 

  8. Yu Q, Aguila B, Gao J, et al. Photomechanical organic crystals as smart materials for advanced applications. Chem Eur J, 2019, 25: 5611–5622

    Article  CAS  Google Scholar 

  9. Samanta R, Ghosh S, Devarapalli R, et al. Visible light mediated photopolymerization in single crystals: Photomechanical bending and thermomechanical unbending. Chem Mater, 2018, 30: 577–581

    Article  CAS  Google Scholar 

  10. Chen K, Wang J, Feng Y, et al. Multiple stimuli-responsive flexible crystal with 2D elastic bending, plastic twisting and photoinduced bending capabilities. J Mater Chem C, 2021, 9: 16762–16770

    Article  CAS  Google Scholar 

  11. Hao Y, Gao L, Zhang X, et al. Azobenzene crystal polymorphism enables tunable photoinduced deformations, mechanical behaviors and photoluminescence properties. J Mater Chem C, 2021, 9: 8294–8301

    Article  CAS  Google Scholar 

  12. Ye Y, Gao L, Hao H, et al. Tuning the photomechanical behavior and excellent elasticity of azobenzene via cocrystal engineering. CrystEngComm, 2020, 22: 8045–8053

    Article  CAS  Google Scholar 

  13. Kitagawa D, Tsujioka H, Tong F, et al. Control of photomechanical crystal twisting by illumination direction. J Am Chem Soc, 2018, 140: 4208–4212

    Article  CAS  Google Scholar 

  14. Cheng X, Yang F, Zhao J, et al. Microscopic visualization and mechanism investigation of the crystal jumping behavior of a cyclic chalcone derivative. Mater Chem Front, 2020, 4: 651–660

    Article  CAS  Google Scholar 

  15. Kato K, Seki T, Ito H. (9-Isocyanoanthracene)gold(I) complexes exhibiting two modes of crystal jumps by different structure change mechanisms. Inorg Chem, 2021, 60: 10849–10856

    Article  CAS  Google Scholar 

  16. Naumov P, Sahoo SC, Zakharov BA, et al. Dynamic single crystals: Kinematic analysis of photoinduced crystal jumping (the photosalient effect). Angew Chem Int Ed, 2013, 52: 9990–9995

    Article  CAS  Google Scholar 

  17. Shields DJ, Karothu DP, Sambath K, et al. Cracking under internal pressure: Photodynamic behavior of vinyl azide crystals through N2 release. J Am Chem Soc, 2020, 142: 18565–18575

    Article  CAS  Google Scholar 

  18. Li S, Yan D. Tuning light-driven motion and bending in macroscale-flexible molecular crystals based on a cocrystal approach. ACS Appl Mater Interfaces, 2018, 10: 22703–22710

    Article  CAS  Google Scholar 

  19. Li S, Lu B, Fang X, et al. Manipulating light-induced dynamic macromovement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed, 2020, 59: 22623–22630

    Article  CAS  Google Scholar 

  20. De J, Liao Q, Xiao X, et al. Remotely photocontrolled microrobots based on photomechanical molecular crystals. ACS Appl Mater Interfaces, 2020, 12: 27493–27498

    Article  CAS  Google Scholar 

  21. Uchida K, Sukata S, Matsuzawa Y, et al. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem Commun, 2008, 326–328

  22. Tamaoki M, Kitagawa D, Kobatake S. Light-driven rapid peeling of photochromic diarylethene single crystals. Cryst Growth Des, 2021, 21: 3093–3099

    Article  CAS  Google Scholar 

  23. Nakagawa Y, Morimoto M, Yokojima S, et al. Efficient surface peeling, a photoinduced result of photochromic diarylethene crystal by multistep light irradiation. Cryst Growth Des, 2023, 23: 1581–1591

    Article  CAS  Google Scholar 

  24. Xu TY, Tong F, Xu H, et al. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J Am Chem Soc, 2022, 144: 6278–6290

    Article  CAS  Google Scholar 

  25. Chalek KR, Dong X, Tong F, et al. Bridging photochemistry and photomechanics with NMR crystallography: The molecular basis for the macroscopic expansion of an anthracene ester nanorod. Chem Sci, 2021, 12: 453–463

    Article  CAS  Google Scholar 

  26. Chen KJ, Tsai YC, Suzaki Y, et al. Rapid and reversible photoinduced switching of a rotaxane crystal. Nat Commun, 2016, 7: 13321

    Article  CAS  Google Scholar 

  27. Koshima H, Ojima N, Uchimoto H. Mechanical motion of azobenzene crystals upon photoirradiation. J Am Chem Soc, 2009, 131: 6890–6891

    Article  CAS  Google Scholar 

  28. Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem Rev, 2014, 114: 12174–12277

    Article  CAS  Google Scholar 

  29. Koshima H, Takechi K, Uchimoto H, et al. Photomechanical bending of salicylideneaniline crystals. Chem Commun, 2011, 47: 11423–11425

    Article  CAS  Google Scholar 

  30. Guo J, Fan J, Liu X, et al. Photomechanical luminescence from through-space conjugated AIEgens. Angew Chem Int Ed, 2020, 59: 8828–8832

    Article  CAS  Google Scholar 

  31. Li P, Wang J, Li P, et al. Minor alkyl modifications for manipulating the fluorescence and photomechanical properties in molecular crystals. Mater Chem Front, 2021, 5: 1355–1363

    Article  CAS  Google Scholar 

  32. Zhu L, Al-Kaysi RO, Bardeen CJ. Reversible photoinduced twisting of molecular crystal microribbons. J Am Chem Soc, 2011, 133: 12569–12575

    Article  CAS  Google Scholar 

  33. Biradha K, Santra R. Crystal engineering of topochemical solid state reactions. Chem Soc Rev, 2013, 42: 950–967

    Article  CAS  Google Scholar 

  34. Zhu L, Agarwal A, Lai J, et al. Solid-state photochemical and photomechanical properties of molecular crystal nanorods composed of anthracene ester derivatives. J Mater Chem, 2011, 21: 6258–6268

    Article  CAS  Google Scholar 

  35. Ramamurthy V, Venkatesan K. Photochemical reactions of organic crystals. Chem Rev, 1987, 87: 433–481

    Article  CAS  Google Scholar 

  36. Li S, Lin Y, Yan D. Two-component molecular cocrystals of 9-acetylanthracene with highly tunable one-/two-photon fluorescence and aggregation induced emission. J Mater Chem C, 2016, 4: 2527–2534

    Article  CAS  Google Scholar 

  37. Yan D, Delori A, Lloyd GO, et al. A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. Angew Chem Int Ed, 2011, 50: 12483–12486

    Article  CAS  Google Scholar 

  38. Yang XG, Zhai ZM, Lu XM, et al. Fast crystallization-deposition of orderly molecule level heterojunction thin films showing tunable up-conversion and ultrahigh photoelectric response. ACS Cent Sci, 2020, 6: 1169–1178

    Article  CAS  Google Scholar 

  39. Xing C, Zhou B, Yan D, et al. Dynamic photoresponsive ultralong phosphorescence from one-dimensional halide microrods toward multilevel information storage. CCS Chem, 2023, 1–11

  40. Wang X, Du S, Zhang R, et al. Drug-drug cocrystals: Opportunities and challenges. Asian J Pharm Sci, 2021, 16: 307–317

    Article  Google Scholar 

  41. Wang J, Dai XL, Lu TB, et al. Temozolomide–hesperetin drug–drug cocrystal with optimized performance in stability, dissolution, and tabletability. Cryst Growth Des, 2021, 21: 838–846

    Article  CAS  Google Scholar 

  42. Li M, Sun J, Kuang W, et al. Drug-drug multicomponent crystals of epalrestat: A novel form of the drug combination and improved solubility and photostability of epalrestat. Cryst Growth Des, 2022, 22: 5027–5035

    Article  CAS  Google Scholar 

  43. Dutta B, Sinha C, Mir MH. The sunlight-driven photosalient effect of a 1D coordination polymer and the release of an elusive cyclobutane derivative. Chem Commun, 2019, 55: 11049–11051

    Article  CAS  Google Scholar 

  44. Al-Kaysi RO, Bardeen CJ. Reversible photoinduced shape changes of crystalline organic nanorods. Adv Mater, 2007, 19: 1276–1280

    Article  CAS  Google Scholar 

  45. Moré R, Busse G, Hallmann J, et al. Photodimerization of crystalline 9-anthracenecarboxylic acid: A nontopotactic autocatalytic transformation. J Phys Chem C, 2010, 114: 4142–4148

    Article  Google Scholar 

  46. Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystlogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  47. Spackman PR, Turner MJ, McKinnon JJ, et al. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystlogr, 2021, 54: 1006–1011

    Article  CAS  Google Scholar 

  48. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592

    Article  Google Scholar 

  49. Frisch M, Trucks G, Schlegel H, et al. Gaussian 09 (revision d.01). 2009

  50. Ranjan S, Honda H, Takamizawa S. Thermo-mechanical reversibility in a shape memory organic salt. J Mater Chem C, 2022, 10: 12765–12775

    Article  CAS  Google Scholar 

  51. Yano Y, Ono T, Hatanaka S, et al. Salt–cocrystal continuum for photofunction modulation: stimuli-responsive fluorescence color-tuning of pyridine-modified intramolecular charge-transfer dyes and acid complexes. J Mater Chem C, 2019, 7: 8847–8854

    Article  CAS  Google Scholar 

  52. Ye Y, Bai Y, Qi L, et al. Flexible optical waveguides in heterocyclic Schiff base self-assembled hydrogen-bonded solvates. Cryst Growth Des, 2023, 23: 1403–1411

    Article  CAS  Google Scholar 

  53. Liu C, Ye K, Wei Z, et al. Fast photoactuation of elastic crystals based on 3-(naphthalen-1-yl)-2-phenylacrylonitriles triggered by subtle photoisomerization. J Mater Chem C, 2022, 10: 14273–14281

    Article  CAS  Google Scholar 

  54. Shu Y, Ye K, Yue Y, et al. Fluorine as a robust balancer for tuning the reactivity of topo-photoreactions of chalcones and the photomechanical effects of molecular crystals. CrystEngComm, 2021, 23: 5856–5868

    Article  CAS  Google Scholar 

  55. Peng J, Xing J, Bai J, et al. Spatial photocontrol of the passive optical output direction of the elastic molecular crystals based on acylhydrazone derivatives. Dyes Pigments, 2021, 194: 109529

    Article  CAS  Google Scholar 

  56. Dutta B, Dey A, Sinha C, et al. Photochemical structural transformation of a linear 1D coordination polymer impacts the electrical conductivity. Inorg Chem, 2018, 57: 8029–8032

    Article  CAS  Google Scholar 

  57. Collet G, Lathion T, Besnard C, et al. On-demand degradation of metal-organic framework based on photocleavable dianthracene-based ligand. J Am Chem Soc, 2018, 140: 10820–10828

    Article  CAS  Google Scholar 

  58. Hu FL, Mi Y, Zhu C, et al. Stereoselective solid-state synthesis of substituted cyclobutanes assisted by pseudorotaxane-like MOFs. Angew Chem Int Ed, 2018, 57: 12696–12701

    Article  CAS  Google Scholar 

  59. Naumov P, Chizhik S, Panda MK, et al. Mechanically responsive molecular crystals. Chem Rev, 2015, 115: 12440–12490

    Article  CAS  Google Scholar 

  60. Ma YJ, Xiao G, Fang X, et al. Leveraging crystalline and amorphous states of a metal-organic complex for transformation of the photosalient effect and positive-negative photochromism. Angew Chem Int Ed, 2023, 62: e202217054

    Article  CAS  Google Scholar 

  61. Huang XD, Wen GH, Bao SS, et al. Thermo- and light-triggered reversible interconversion of dysprosium–anthracene complexes and their responsive optical, magnetic and dielectric properties. Chem Sci, 2021, 12: 929–937

    Article  CAS  Google Scholar 

  62. Sun Y, Ye Y, Qi L, et al. Tuning solid-state emission of 9-anthraldehyde through cocrystal engineering. Crystals, 2023, 13: 595

    Article  CAS  Google Scholar 

  63. Zhu W, Zheng R, Fu X, et al. Revealing the charge-transfer interactions in self-assembled organic cocrystals: Two-dimensional photonic applications. Angew Chem Int Ed, 2015, 54: 6785–6789

    Article  CAS  Google Scholar 

  64. Wang H, Li Q, Zhang J, et al. Visualization and manipulation of solidstate molecular motions in cocrystallization processes. J Am Chem Soc, 2021, 143: 9468–9477

    Article  CAS  Google Scholar 

  65. Awad WM, Davies DW, Kitagawa D, et al. Mechanical properties and peculiarities of molecular crystals. Chem Soc Rev, 2023, 52: 3098–3169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Xinghua Jin at the School of Pharmaceutical Science and Technology, Tianjin University, for his help in using the liquid NMR spectrometer.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ye Y and Xie C conceived the idea. Hu X prepared the samples. Qi L tested and analyzed the PXRD and HNMR. Sun Y tested and analyzed the fluorescence and diffuse reflectance spectra. Xuanyuan S and Ye Y performed the theoretical calculations. Ye Y wrote the paper with support from Hao H and Xie C. All authors contributed to the general discussion.

Corresponding author

Correspondence to Chuang Xie  (谢闯).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yang Ye is a PhD candidate at the School of Chemical Engineering and Technology, Tianjin University. His current research focuses on designing photomechanical crystals and optoelectronic functional crystal materials through crystal engineering.

Chuang Xie is an associate professor at the School of Chemical Engineering and Technology, Tianjin University. He received his BS and PhD degrees from Tianjin University in 2002 and 2007, respectively. He worked as a postdoc at Tianjin Economic Developing Area from 2007 to 2009 and a visiting scholar at Penn State University from 2009 to 2010. His research interests focus on crystalline functional materials and industrial crystallization technology.

Electronic supplementary material

Supplementary material, approximately 8.45 MB.

Supplementary material, approximately 6.97 MB.

40843_2023_2668_MOESM3_ESM.pdf

Supplementary Information: Integrating dual photoresponsive molecules via cocrystal strategy: photosalient effects, negative photochromism, and fluorescence enhancement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Qi, L., Sun, Y. et al. Integrating dual photoresponsive molecules via a cocrystal strategy: photosalient effects, negative photochromism, and fluorescence enhancement. Sci. China Mater. 67, 223–231 (2024). https://doi.org/10.1007/s40843-023-2668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2668-y

Keywords

Navigation