Skip to main content
Log in

Mechanochromism and mechanical deformation of organic crystals: tunable packing structure for achieving luminescence reversibility and elasticity

有机晶体的机械致色性和机械变形性能: 可调的堆积 结构用于实现发光可逆和弹性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Organic luminescent crystals with mechanochromic and mechanical deformation properties are fascinating owing to their vast application prospects. In this study, two types of cyanostyrene derivatives, FPPA and FPLA, and their polymorphs were prepared to systematically examine the relation between mechano-responsive properties and crystal packing structures. Crystallographic and spectroscopic analyses and theoretical simulations revealed that the luminescence switching triggered by mechanical grinding originates from the crystal-to-crystal transition between the two polymorphs. Anisotropic shearing induces the molecules in the crystal with loose packing to reorganize into a more compact packing structure to counteract mechanical grinding disturbances. A thermo-induced phase transition could be used to recover the original luminescence. In addition, the needlelike crystals of Pr-I and Pentyl-I with interlocked and corrugated structures display outstanding elasticity when subjected to localized external forces. Reversible and fast luminescence switching between the two polymorphs of FPLA with green and cyan emissions was successfully applied in an information storage and encryption system.

摘要

具有机械致变色和变形性能的有机发光晶体材料因其广阔的应 用潜力而备受瞩目. 本文报道了两种氰基苯乙烯衍生物(FPPA和FPLA) 及其晶体多晶型, 系统地研究了其机械响应性能与晶体堆积结构的关 系. 晶体学、光谱分析和理论模拟表明, 机械研磨引发的荧光转换源自 两种多晶型之间的相变. 各向异性的剪切力引发分子由松散到紧密的 堆积结构变化以抵抗机械研磨干扰. 此外, 具有交叉互锁和波纹状结构 的针状晶体在受到局部外力作用时表现出优异的弹性性能. 最后, 探索 了晶体材料荧光切换性能在信息存储和加密系统的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ma J, Yang Y, Valenzuela C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew Chem Int Ed, 2022, 61: e202116219

    Article  CAS  Google Scholar 

  2. Xu X, Yan B. Bioinspired HOF-based luminescent skin sensor with triple mechanochromism responses for the recognition and collection of human biophysical signals. Mater Horiz, 2023, 10: 2062–2074

    Article  CAS  Google Scholar 

  3. Lu B, Liu S, Yan D. Recent advances in photofunctional polymorphs of molecular materials. Chin Chem Lett, 2019, 30: 1908–1922

    Article  CAS  Google Scholar 

  4. Li J, Hou C, Qi Q, et al. Thermal energy-driven solid-state molecular rotation monitored by real-time emissive color switching. CCS Chem, 2022, 4: 2711–2723

    Article  CAS  Google Scholar 

  5. Gong YB, Zhang P, Gu YR, et al. The influence of molecular packing on the emissive behavior of pyrene derivatives: Mechanoluminescence and mechanochromism. Adv Opt Mater, 2018, 6: 1800198

    Article  Google Scholar 

  6. Luo W, Tang Y, Zhang X, et al. Multifunctional fluorescent materials with reversible mechanochromism and distinct photochromism. Adv Opt Mater, 2023, 11: 2202259

    Article  CAS  Google Scholar 

  7. Nie F, Zhou B, Wang KZ, et al. Highly tunable ultralong room-temperature phosphorescence from ionic supramolecular adhesives for multifunctional applications. Chem Eng J, 2022, 430: 133084

    Article  CAS  Google Scholar 

  8. Man Z, Lv Z, Xu Z, et al. Highly sensitive and easily recoverable excitonic piezochromic fluorescent materials for haptic sensors and anti-counterfeiting applications. Adv Funct Mater, 2020, 30: 2000105

    Article  CAS  Google Scholar 

  9. Meng Z, Yan H, Liu M, et al. Encoding and storage of information in mechanical metamaterials. Adv Sci, 2023, 10: e2301581

    Article  Google Scholar 

  10. Yan Y, Liu C, Fan J, et al. Single-component color-tunable smart organic emitters with simultaneous multistage stimuli-responsiveness and multimode emissions. Research, 2023, 6: 0241

    Article  CAS  Google Scholar 

  11. Huang LB, Bai G, Wong MC, et al. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv Mater, 2016, 28: 2744–2751

    Article  CAS  Google Scholar 

  12. Tang J, Zhao C, Luo Q, et al. Ultrahigh-transparency and pressure-sensitive iontronic device for tactile intelligence. npj Flex Electron, 2022, 6: 54

    Article  CAS  Google Scholar 

  13. Wan Y, Li XC, Chen J, et al. Stretchable and self-healing elastomers with aggregation-induced emission based on hydrogen bonding cross-linked networks. Macromolecules, 2023, 56: 3345–3353

    Article  CAS  Google Scholar 

  14. Jiang Z, Zhao H, Wu W, et al. Multi-stimuli responsive organic polymorphic crystals: Anisotropic elasticity and plasticity, mechanochromism and photomechanical motions. J Mater Chem C, 2023, 11: 4375–4383

    Article  CAS  Google Scholar 

  15. Jin M, Seki T, Ito H. Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups. J Am Chem Soc, 2017, 139: 7452–7455

    Article  CAS  Google Scholar 

  16. Ding Z, Lu T, Bi C, et al. A multifunctional material with distinct mechanochromic and piezochromic properties: n-stacking in play. Mater Chem Front, 2022, 6: 86–93

    Article  CAS  Google Scholar 

  17. Dong Y, Xu B, Zhang J, et al. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chem, 2012, 124: 10940–10943

    Article  Google Scholar 

  18. Ito H, Muromoto M, Kurenuma S, et al. Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun, 2013, 4: 2009

    Article  Google Scholar 

  19. Seki T, Sakurada K, Ito H. Controlling mechano- and seeding-triggered single-crystal-to-single-crystal phase transition: Molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed, 2013, 52: 12828–12832

    Article  CAS  Google Scholar 

  20. Di Q, Li J, Zhang Z, et al. Quantifiable stretching-induced fluorescence shifts of an elastically bendable and plastically twistable organic crystal. Chem Sci, 2021, 12: 15423–15428

    Article  CAS  Google Scholar 

  21. Hayashi S, Koizumi T. Elastic organic crystals of a fluorescent π-con-jugated molecule. Angew Chem Int Ed, 2016, 55: 2701–2704

    Article  CAS  Google Scholar 

  22. Mishra MK, Mishra K, Syed Asif SA, et al. Structural analysis of elastically bent organic crystals using in situ indentation and micro-Raman spectroscopy. Chem Commun, 2017, 53: 13035–13038

    Article  CAS  Google Scholar 

  23. Worthy A, Grosjean A, Pfrunder MC, et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat Chem, 2018, 10: 65–69

    Article  CAS  Google Scholar 

  24. Bhandary S, Thompson AJ, McMurtrie JC, et al. The mechanism of bending in a plastically flexible crystal. Chem Commun, 2020, 56: 12841–12844

    Article  CAS  Google Scholar 

  25. Panda MK, Ghosh S, Yasuda N, et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat Chem, 2015, 7: 65–72

    Article  CAS  Google Scholar 

  26. Chen K, Wang J, Feng Y, et al. Multiple stimuli-responsive flexible crystal with 2D elastic bending, plastic twisting and photoinduced bending capabilities. J Mater Chem C, 2021, 9: 16762–16770

    Article  CAS  Google Scholar 

  27. Liu H, Lu Z, Tang B, et al. A flexible organic single crystal with plastic-twisting and elastic-bending capabilities and polarization-rotation function. Angew Chem Int Ed, 2020, 59: 12944–12950

    Article  CAS  Google Scholar 

  28. Saha S, Desiraju GR. Crystal engineering of hand-twisted helical crystals. J Am Chem Soc, 2017, 139: 1975–1983

    Article  CAS  Google Scholar 

  29. Cai XM, Lin Y, Tang Z, et al. Filling the gap between molecular and aggregate states: How does molecular packing affect photophysical properties? Chem Eng J, 2023, 451: 138627

    Article  CAS  Google Scholar 

  30. Tu D, Zhang J, Zhang Y, et al. How do molecular motions affect structures and properties at molecule and aggregate levels? J Am Chem Soc, 2021, 143: 11820–11827

    Article  CAS  Google Scholar 

  31. Yan D, Evans DG. Molecular crystalline materials with tunable luminescent properties: From polymorphs to multi-component solids. Mater Horiz, 2014, 1: 46–57

    Article  CAS  Google Scholar 

  32. Li J, Peng X, Chen D, et al. Tuning the circularly polarized luminescence of supramolecules via self-assembly morphology control. ACS Macro Lett, 2022, 11: 1174–1182

    Article  CAS  Google Scholar 

  33. Li J, Peng X, Hou C, et al. Discriminating chiral supramolecular motions by circularly polarized luminescence. Chem Eur J, 2022, 28: e202202336

    Article  CAS  Google Scholar 

  34. Sagara Y, Lavrenova A, Crochet A, et al. A thermo- and mechano-responsive cyano-substituted oligo(p-phenylene vinylene) derivative with five emissive states. Chem Eur J, 2016, 22: 4374–4378

    Article  CAS  Google Scholar 

  35. Park SK, Cho I, Gierschner J, et al. Stimuli-responsive reversible fluorescence switching in a crystalline donor-acceptor mixture film: Mixed stack charge-transfer emission versus segregated stack monomer emission. Angew Chem Int Ed, 2016, 55: 203–207

    Article  CAS  Google Scholar 

  36. Wang Y, Liu W, Bu L, et al. Reversible piezochromic luminescence of 9,10-bis[(N-alkylcarbazol-3-yl)vinyl]anthracenes and the dependence on N-alkyl chain length. J Mater Chem C, 2013, 1: 856–862

    Article  CAS  Google Scholar 

  37. Zheng X, Liu X, Liu L, et al. Multi-stimuli-induced mechanical bending and reversible fluorescence switching in a single organic crystal. Angew Chem Int Ed, 2022, 61: e202113073

    Article  CAS  Google Scholar 

  38. Ma YJ, Xiao G, Fang X, et al. Leveraging crystalline and amorphous states of a metal-organic complex for transformation of the photosalient effect and positive-negative photochromism. Angew Chem, 2023, 135: e202217054

    Article  Google Scholar 

  39. Zheng Y, Jia X, Li K, et al. Energy conversion in single-crystal-to-single-crystal phase transition materials. Adv Energy Mater, 2021, 12: 2100324

    Article  Google Scholar 

  40. Liu Y, Li A, Xu S, et al. Reversible luminescent switching in an organic cocrystal: Multi-stimuli-induced crystal-to-crystal phase transformation. Angew Chem Int Ed, 2020, 59: 15098–15103

    Article  CAS  Google Scholar 

  41. Liu Y, Zeng Q, Zou B, et al. Piezochromic luminescence of donor-acceptor cocrystals: Distinct responses to anisotropic grinding and isotropic compression. Angew Chem Int Ed, 2018, 57: 15670–15674

    Article  CAS  Google Scholar 

  42. Annadhasan M, Agrawal AR, Bhunia S, et al. Mechanophotonics: Flexible single-crystal organic waveguides and circuits. Angew Chem Int Ed, 2020, 59: 13852–13858

    Article  CAS  Google Scholar 

  43. Tang B, Liu B, Liu H, et al. Naturally and elastically bent organic polymorphs for multifunctional optical applications. Adv Funct Mater, 2020, 30: 2004116

    Article  CAS  Google Scholar 

  44. Karothu DP, Dushaq G, Ahmed E, et al. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat Commun, 2021, 12: 1326

    Article  CAS  Google Scholar 

  45. Li S, Lu B, Fang X, et al. Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed, 2020, 59: 22623–22630

    Article  CAS  Google Scholar 

  46. Ghosh S, Mishra MK, Kadambi SB, et al. Designing elastic organic crystals: Highly flexible polyhalogenated N-benzylideneanilines. Angew Chem Int Ed, 2015, 54: 2674–2678

    Article  CAS  Google Scholar 

  47. Ghosh S, Reddy CM. Elastic and bendable caffeine cocrystals: Implications for the design of flexible organic materials. Angew Chem Int Ed, 2012, 51: 10319–10323

    Article  CAS  Google Scholar 

  48. Krishna GR, Devarapalli R, Lal G, et al. Mechanically flexible organic crystals achieved by introducing weak interactions in structure: Supramolecular shape synthons. J Am Chem Soc, 2016, 138: 13561–13567

    Article  CAS  Google Scholar 

  49. Li S, Yan D. Tuning light-driven motion and bending in macroscale-flexible molecular crystals based on a cocrystal approach. ACS Appl Mater Interfaces, 2018, 10: 22703–22710

    Article  CAS  Google Scholar 

  50. Chu X, Lu Z, Tang B, et al. Engineering mechanical compliance of an organic compound toward flexible crystal lasing media. J Phys Chem Lett, 2020, 11: 5433–5438

    Article  CAS  Google Scholar 

  51. Huang A, Fan Y, Wang K, et al. Organic persistent RTP crystals: From brittle to flexible by tunable self-partitioned molecular packing. Adv Mater, 2023, 35: e2209166

    Article  Google Scholar 

  52. Tang B, Tang S, Qu C, et al. Side-chain engineering of organic crystals for lasing media with tunable flexibility. CCS Chem, 2023, 5: 2348–2357

    Article  CAS  Google Scholar 

  53. Yoon SJ, Chung JW, Gierschner J, et al. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc, 2010, 132: 13675–13683

    Article  CAS  Google Scholar 

  54. Yoon SJ, Park SY. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal: Secondary bonding interaction in molecular stacking assembly. J Mater Chem, 2011, 21: 8338–8346

    Article  CAS  Google Scholar 

  55. Li Q, Li Z. Molecular packing: Another key point for the performance of organic and polymeric optoelectronic materials. Acc Chem Res, 2020, 53: 962–973

    Article  CAS  Google Scholar 

  56. Zhang HY, Zhang ZL, Ye KQ, et al. Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures. Adv Mater, 2006, 18: 2369–2372

    Article  CAS  Google Scholar 

  57. Wang J, Wang C, Gong Y, et al. Bromine-substituted fluorene: Molecular structure, Br–Br interactions, room-temperature phosphorescence, and tricolor triboluminescence. Angew Chem Int Ed, 2018, 57: 16821–16826

    Article  CAS  Google Scholar 

  58. Zhang G, Lu J, Fraser CL. Mechanochromic luminescence quenching: Force-enhanced singlet-to-triplet intersystem crossing for iodide-substituted difluoroboron-dibenzoylmethane-dodecane in the solid state. Inorg Chem, 2010, 49: 10747–10749

    Article  CAS  Google Scholar 

  59. Chung JW, You Y, Huh HS, et al. Shear- and UV-induced fluorescence switching in stilbenic n-dimer crystals powered by reversible [2 + 2] cycloaddition. J Am Chem Soc, 2009, 131: 8163–8172

    Article  CAS  Google Scholar 

  60. Wang C, Sun CC. The landscape of mechanical properties of molecular crystals. CrystEngComm, 2020, 22: 1149–1153

    Article  CAS  Google Scholar 

  61. Oladepo SA, Loppnow GR. Initial excited-state structural dynamics of 9-methyladenine from UV resonance Raman spectroscopy. J Phys Chem B, 2011, 115: 6149–6156

    Article  CAS  Google Scholar 

  62. Jiang XL, Pei KM, Wang HG, et al. Resonance Raman intensity analysis of the excited-state proton-transfer dynamics of 2-hydro-xybenzaldehyde in the charge-transfer/proton-transfer absorption band. J Phys Chem A, 2007, 111: 13182–13192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22208237) and China Postdoctoral Science Foundation (2021M692382).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jiang Z did the experiments and analysis, validated the results, and wrote the manuscript. Yao Y contributed to the material synthesis. Zheng Z, Wang N and Wang T contributed to the theoretical calculations. Chen K, Tian B and Hao H provided key advice and supervised the study.

Corresponding authors

Correspondence to Na Wang  (王娜) or Ting Wang  (王霆).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Na Wang is an associate researcher at the School of Chemical Engineering and Technology, Tianjin University. Her research focuses on the fundamental theoretical research in industrial crystallization, the design and control of crystal product morphology, the design and development of eutectic and co-crystallization technologies, and crystallization process intensification.

Ting Wang received his PhD degree from the School of Chemical Engineering and Technology, Tianjin University in 2018. He is currently an associate professor at the School of Chemical Engineering and Technology, Tianjin University. His research interests include functional crystal materials, cocrystals and crystallization technology.

Zhicheng Jiang is a postgraduate student under the supervision of Prof. Hongxun Hao at the School ofChemical Engineering and Technology, Tianjin University. Her research focuses on functional crystalline materials.

Electronic supplementary material

40843_2023_2662_MOESM1_ESM.pdf

Supporting Information: Mechanochromism and Mechanical Deformation of Organic Crystals: Tunable Packing Structure for Achieving Luminescence Reversibility and Elasticity

Supplementary material, approximately 434 KB.

Supplementary material, approximately 1.55 MB.

Supplementary material, approximately 453 KB.

Supplementary material, approximately 841 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chen, K., Tian, B. et al. Mechanochromism and mechanical deformation of organic crystals: tunable packing structure for achieving luminescence reversibility and elasticity. Sci. China Mater. 67, 232–241 (2024). https://doi.org/10.1007/s40843-023-2662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2662-y

Keywords

Navigation