Skip to main content
Log in

Robust joining of FGH98 superalloy to DD5 single crystal by modulating interdiffusion behavior with Ni/high-entropy alloy hybrid interlayer

基于Ni/高熵合金复合中间层调控FGH98高温合金与DD5单晶的界面互扩散行为以实现高性能连接

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

FGH98 superalloys and DD5 single crystals are highly desired to work together in high-temperature service environments. In this study, the FGH98-DD5 robust joining was enabled by diffusion bonding using a hybrid interlayer of Ni and high-entropy alloy (Ni/HEA). Elemental interdiffusion among the FGH98 superalloy, DD5 single crystal, and Ni/HEA hybrid interlayer triggered the formation of individual tiny Ni3Al phase (γ′)-reinforced face-centered cubic (FCC) matrix composite structures, resulting in the high-strength interfacial bonding. Temperature plays a key role in regulating the elemental interdiffusion. As the temperature required for diffusion bonding increased from 1075 to 1130°C, the elemental interdiffusion intensified to promote the void closure at interfaces and the thickening of composite diffusion zones (γ′-reinforced FCC matrix composites), which favors joint strengthening. Nevertheless, the too-high diffusion temperature (1160°C) led to the formation of coarse grains and additional carbides in the FGH98 superalloy and HEA layer, deteriorating the joint performance. Ultimately, the optimal diffusion bonding condition was identified as 1130°C for 1 h with a low pressure of 2 MPa under vacuum, in which the FGH98-DD5 joint underwent a ductile fracture with a shear strength of up to 650 MPa. This study provides scientific insight for modulating interdiffusion behavior, as well as theoretical and technical support for joining FGH98 superalloys reliably with DD5 single crystals.

摘要

FGH98高温合金和DD5单晶有望在高温环境中服役. 在本研究中, 我们采用Ni/高熵合金(Ni/HEA)复合中间层实现了FGH98与DD5的高性能扩散连接. FGH98高温合金、DD5单晶和Ni/HEA复合中间层间元素互扩散导致焊缝处形成细小Ni 3 Al相(γ′)增强FCC固溶体的复合组织, 实现了高强度界面结合. 温度是影响界面元素扩散的关键参量. 当焊接温度从1075°C提高至1130°C时, 界面处元素扩散剧烈, 促进了界面空隙闭合和复合扩散区增厚, 有利于接头性能提升. 然而, 过高的扩散温度(1160°C)导致FGH98高温合金和HEA层中形成粗晶组织及化合物相, 使接头性能恶化. FGH98-DD5连接体系最优工艺参数为: 焊接温度为1130°C、焊接压力为2 MPa、焊接时间为1 h. 接头最高抗剪强度为650 MPa, 剪切过程中接头表现为韧性断裂. 该研究可为界面元素扩散调控提供科学借鉴, 也为FGH98高温合金与DD5单晶的可靠连接提供了理论和技术支持.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lemos G, Fredel MC, Pyczak F, et al. Creep resistance improvement of a polycrystalline Ni-based superalloy via TiC particles reinforcement. Mater Sci Eng-A, 2022, 854: 143821

    Article  CAS  Google Scholar 

  2. Chan JS, Le Ferrand H. Assessment of nacre-like ceramics in replacement to Ni superalloys in aircraft’s engines. Sustain Mater Technol, 2022, 31: e00363

    CAS  Google Scholar 

  3. Yu S, Zhan X, Liu F, et al. 900 °C oxidation resistance of Ni-base superalloys alloyed with different refractory elements. J Alloys Compd, 2022, 904: 164071

    Article  CAS  Google Scholar 

  4. Tan L, Yang XG, Shi DQ, et al. Unified fatigue life modelling and uncertainty estimation of Ni-based superalloy family with a supervised machine learning approach. Eng Fract Mech, 2022, 275: 108813

    Article  Google Scholar 

  5. Huang H, Liu G, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy. J Alloys Compd, 2019, 805: 1254–1259

    Article  CAS  Google Scholar 

  6. Yuan L, Xiong JT, Ren J, et al. Ultrastrong and ductile transient liquid phase (TLP) bonding joints reinforced by ordered multi-precipitates. Compos Part B-Eng, 2022, 231: 109568

    Article  CAS  Google Scholar 

  7. Cheng T, Wang Y, Zhao Y, et al. Effect of remelting solution heat treatment on microstructure evolution of nickel-based single crystal superalloy DD5. Mater Charact, 2022, 192: 112186

    Article  CAS  Google Scholar 

  8. Li P, Jiang W, Rui SS, et al. Effect of misorientation on the fatigue life of nickel-base single crystal superalloy DD5 at 980 °C. Int J Fatigue, 2021, 153: 106479

    Article  CAS  Google Scholar 

  9. Sah I, Kim D, Lee HJ, et al. The recovery of tensile ductility in diffusion-bonded Ni-base alloys by post-bond heat treatments. Mater Des, 2013, 47: 581–589

    Article  CAS  Google Scholar 

  10. Li S, Zu Y, Du Y, et al. Microstructural evolution and mechanical properties of micro-deformation diffusion bonding Inconel 617 superalloy. Mater Charact, 2022, 194: 112359

    Article  CAS  Google Scholar 

  11. Liu J, Cao J, Lin X, et al. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint. Mater Des, 2013, 49: 622–626

    Article  CAS  Google Scholar 

  12. Zhang B, Chen C, Cai Z, et al. Study on microstructure and mechanical properties of single crystal/powder superalloy pulsed current diffusion bonded joints. J Alloys Compd, 2022, 890: 161681

    Article  CAS  Google Scholar 

  13. Peng Y, Li J, Li S, et al. Microstructure evaluation and fracture mechanism of dissimilar diffusion bonded joint of single crystal superalloy DD5 and polycrystalline superalloy GH4169. Mater Charact, 2022, 189: 111999

    Article  CAS  Google Scholar 

  14. Yuan L, Xiong J, Peng Y, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy. Mater Sci Eng-A, 2020, 772: 138670

    Article  CAS  Google Scholar 

  15. Peng Y, Li J, Peng X, et al. Interfacial microstructure evolution and formation process of the joints prepared by diffusion bonding on DD6 nickel-based single crystal superalloy. J Mater Res Tech, 2020, 9: 16317–16328

    Article  CAS  Google Scholar 

  16. Xiong J, Yuan L, Zhu Y, et al. Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer. J Mater Sci, 2019, 54: 6552–6564

    Article  CAS  Google Scholar 

  17. Yang ZW, Lian J, Wang J, et al. Diffusion bonding of Ni3Al-based alloy using a Ni interlayer. J Alloys Compd, 2020, 819: 153324

    Article  CAS  Google Scholar 

  18. Liu G, Lin F, Yang J, et al. Microstructure and mechanical properties of the joint prepared by diffusion bonding on an advanced PM Ni based superalloy. Vacuum, 2022, 206: 111501

    Article  CAS  Google Scholar 

  19. Zhang LX, Shi JM, Li HW, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy. Mater Des, 2016, 97: 230–238

    Article  CAS  Google Scholar 

  20. Hussain MZ, Xiong J, Li J, et al. Structural characterization of a composite joint prepared during laser welding of Ti-22Al-27Nb inter-metallic alloy with an interlayer of Cu-Hf-Ni-Ti-Zr high entropy bulk metallic glass. Compos Part B-Eng, 2022, 243: 110167

    Article  CAS  Google Scholar 

  21. Liu J, Lin D, Hu J, et al. Microstructure and mechanical properties of a GH3536/SS304 joint brazed with a Co25Fe25Mn5Ni25Ti20 eutectic high-entropy alloy filler. Mater Charact, 2022, 193: 112305

    Article  CAS  Google Scholar 

  22. Liang Y, Dong K, Yang Y, et al. Vacuum brazing of YSZ ceramic and TC4 alloy with a Ti20Zr20Hf20Cu20Ni20 high entropy amorphous alloy. Mater Sci Eng-A, 2022, 854: 143815

    Article  CAS  Google Scholar 

  23. Tian F, Shi J, Jin F, et al. Microstructure and mechanical response of the DD5 single crystal and FGH98 superalloy joint diffusion bonded using Al0.3FeCoNiCr high entropy alloy interlayer. Mater Sci Eng-A, 2022, 854: 143784

    Article  CAS  Google Scholar 

  24. Shi J, Liu J, Jin F, et al. Diffusion bonding of FGH98 superalloy and DD5 single crystal using pure Ni interlayer. Mater Today Commun, 2023, 37: 107003

    Article  CAS  Google Scholar 

  25. De Boer FR, Mattens W, Boom R, et al. Cohesion in Metals: Transition Metal Alloys, Amsterdam: North-Holland, 1988

    Google Scholar 

  26. King DJM, Middleburgh SC, McGregor AG, et al. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater, 2016, 104: 172–179

    Article  CAS  Google Scholar 

  27. Singh AK, Subramaniam A. On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd, 2014, 587: 113–119

    Article  CAS  Google Scholar 

  28. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238

    Article  CAS  Google Scholar 

  29. Fu Z, Jiang L, Wardini JL, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv, 2018, 4: eaat8712

    Article  CAS  Google Scholar 

  30. Liu L, Zhang Y, Han J, et al. Nanoprecipitate-strengthened high-entropy alloys. Adv Sci, 2021, 8: 2100870

    Article  CAS  Google Scholar 

  31. Liang YJ, Wang L, Wen Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat Commun, 2018, 9: 4063

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52005410 and 52375146), China Postdoctoral Science Foundation (2019TQ0263 and 2020M683560), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Shi J designed the research, carried out the experiments, and wrote the manuscript; Guo H and Sun X participated in the experiments; Jin F and Wang Q analyzed the data and revised the paper with support from Tian F, Li J, Yang J, and Ma N.

Corresponding authors

Correspondence to Feng Jin  (金峰) or Qian Wang  (王倩).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Junmiao Shi is an associate professor at the East China University of Science and Technology. He received his PhD degree from Harbin Institute of Technology. His research interests focus on dissimilar material joining and reliability evaluation, especially for superalloys and high-entropy alloys.

Feng Jin got his PhD degree from Northwestern Polytechnical University in 2021 and visited Helmholtz-Zentrum Hereon as a post-doctor during 2021–2022. His research is specifically focused on solid-state welding process, especially friction welding and diffusion bonding.

Qian Wang obtained her PhD degree from Osaka University in 2021. Currently, she is an assistant professor at Osaka University. Her research interests include joining and additive manufacturing, mechanics of materials, and modeling and design for sustainable materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Guo, H., Jin, F. et al. Robust joining of FGH98 superalloy to DD5 single crystal by modulating interdiffusion behavior with Ni/high-entropy alloy hybrid interlayer. Sci. China Mater. 66, 4875–4885 (2023). https://doi.org/10.1007/s40843-023-2644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2644-y

Keywords

Navigation