Skip to main content
Log in

Tough and fatigue-resistant anisotropic hydrogels via fiber reinforcement and magnetic field induction

基于纤维增强和磁场诱导构建坚韧、抗疲劳各向异 性水凝胶及其性能研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Biological tissues (such as tendons and cartilages) are not only well known for their excellent strength, modulus, and toughness, but also have long-term stability which can withstand millions of high-stress cycles without fracture, and show a fatigue threshold of more than 1000 J m−2. In contrast, although synthetic hydrogels are comparable to natural soft tissues in terms of strength, modulus, toughness, and other properties, these toughened gels will still be subjected to fatigue fracture under repeated cyclic loading, exhibiting a fatigue threshold usually below 100 J m−2. Here, we report a simple strategy for the development of tough and fatigue-resistant anisotropic hydrogels with a fatigue threshold more than 100 times that of conventional hydrogels. Our two-step process mainly includes the formation of an arranged polydopamine-Fe3O4-carbon fiber structure, followed by freezing-thawing and annealing, synergistically contributing to the ultrahigh strength and toughness, excellent tribological properties, and extraordinary fatigue resistance. The tensile strength, compressive strength, and fatigue threshold of the anisotropic hydrogel were up to 11.82 ± 0.85 MPa, 5.95 ± 0.35 MPa, and 1845 J m−2, respectively, which were significantly higher than those of most biogels and synthetic hydrogels. Therefore, this research provides a feasible method for manufacturing soft materials with excellent properties and expands the application of soft materials in load-bearing materials, soft robots, flexible electronics, etc.

摘要

生物组织(如肌腱、软骨等)不仅具有优异的强度、模量和韧性, 而且具有长期稳定性, 可承受数百万次高应力循环而不断裂, 其疲劳阈 值超过1000 J m−2. 相比之下, 尽管合成水凝胶在强度、模量、韧性和 其他性能方面与天然软组织相当, 但这些增韧水凝胶仍然会在反复循 环载荷下遭受疲劳断裂, 其疲劳阈值通常低于100 J m−2. 在本工作中, 我们报道了一种简单的策略, 用于开发韧性和抗疲劳的各向异性水凝 胶, 其疲劳阈值超过常规水凝胶的100倍. 各向异性水凝胶通过两步工 艺合成, 包括磁场定向工艺形成优先排列的PDA-Fe3O4-CF纤维结构, 以及冷冻解冻-退火工艺处理, 优先排列纤维结构和高结晶度的协同作 用具有超高的强度和韧性、优异的摩擦学性能和非凡的抗疲劳性能. 各向异性水凝胶的抗拉强度、抗压强度和疲劳阈值分别高达11.82 ± 0.85 MPa、5.95 ±0.35 MPa和1845 J m−2, 显著高于大多数生物凝胶和 合成水凝胶. 因此, 本研究为制造性能优异的软材料提供了一种可行的 方法, 拓展了软质材料在承重材料(如人工软组织)、软机器人、柔性电 子等领域的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mredha MTI, Jeon I. Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog Mater Sci, 2021, 124: 100870

    Article  Google Scholar 

  2. Zhao Z, Wang Z, Li G, et al. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater, 2021, 31: 2103339

    Article  CAS  Google Scholar 

  3. Ilami M, Bagheri H, Ahmed R, et al. Materials, actuators, and sensors for soft bioinspired robots. Adv Mater, 2021, 33: 2003139

    Article  CAS  Google Scholar 

  4. Jiang L, Lu X. Functional hydrogel-based supercapacitors for wearable bioelectronic devices. Mater Chem Front, 2021, 5: 7479–7498

    Article  CAS  Google Scholar 

  5. Gu Z, Huang K, Luo Y, et al. Double network hydrogel for tissue engineering. WIREs Nanomed Nanobiotechnol, 2018, 10: e1520

    Article  Google Scholar 

  6. Zhao H, Liu M, Zhang Y, et al. Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 2020, 12: 14976–14995

    Article  CAS  Google Scholar 

  7. Beckett LE, Lewis JT, Tonge TK, et al. Enhancement of the mechanical properties of hydrogels with continuous fibrous reinforcement. ACS BioMater Sci Eng, 2020, 6: 5453–5473

    Article  CAS  Google Scholar 

  8. Zhang G, Chen S, Peng Z, et al. Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics. ACS Appl Mater Interfaces, 2021, 13: 12531–12540

    Article  CAS  Google Scholar 

  9. Zhao Z, Fang R, Rong Q, et al. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv Mater, 2017, 29: 1703045

    Article  Google Scholar 

  10. Choi S, Choi Y, Kim J. Anisotropic hybrid hydrogels with superior mechanical properties reminiscent of tendons or ligaments. Adv Funct Mater, 2019, 29: 1904342

    Article  Google Scholar 

  11. Yang F, Zhao J, Koshut WJ, et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv Funct Mater, 2020, 30: 2003451

    Article  CAS  Google Scholar 

  12. Sun JY, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489: 133–136

    Article  CAS  Google Scholar 

  13. Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater, 2003, 15: 11551158

    Article  Google Scholar 

  14. Qiao Z, Cao M, Michels K, et al. Design and fabrication of highly stretchable and tough hydrogels. Polym Rev, 2020, 60: 420–441

    Article  CAS  Google Scholar 

  15. Bai R, Yang Q, Tang J, et al. Fatigue fracture of tough hydrogels. Extreme Mech Lett, 2017, 15: 91–96

    Article  Google Scholar 

  16. Lin S, Liu X, Liu J, et al. Anti-fatigue-fracture hydrogels. Sci Adv, 2019, 5: eaau8528

    Article  Google Scholar 

  17. Bai R, Yang J, Morelle XP, et al. Fatigue fracture of self-recovery hydrogels. ACS Macro Lett, 2018, 7: 312–317

    Article  CAS  Google Scholar 

  18. Zhang W, Liu X, Wang J, et al. Fatigue of double-network hydrogels. Eng Fract Mech, 2018, 187: 74–93

    Article  Google Scholar 

  19. Bircher K, Zündel M, Pensalfini M, et al. Tear resistance of soft collagenous tissues. Nat Commun, 2019, 10: 792

    Article  CAS  Google Scholar 

  20. Taylor D, O’Mara N, Ryan E, et al. The fracture toughness of soft tissues. J Mech Behav BioMed Mater, 2012, 6: 139–147

    Article  Google Scholar 

  21. Liang X, Chen G, Lin S, et al. Anisotropically fatigue-resistant hydrogels. Adv Mater, 2021, 33: 2102011

    Article  CAS  Google Scholar 

  22. Lin S, Liu J, Liu X, et al. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc Natl Acad Sci USA, 2019, 116: 10244–10249

    Article  CAS  Google Scholar 

  23. Hu D, Cui Y, Mo K, et al. Ultrahigh strength nanocomposite hydrogels designed by locking oriented tunicate cellulose nanocrystals in polymeric networks. Compos Part B-Eng, 2020, 197: 108118

    Article  CAS  Google Scholar 

  24. Chau M, De France KJ, Kopera B, et al. Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater, 2016, 28: 3406–3415

    Article  CAS  Google Scholar 

  25. Hua M, Wu S, Ma Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590: 594–599

    Article  CAS  Google Scholar 

  26. Liu K, Han L, Tang P, et al. An anisotropic hydrogel based on mussel-inspired conductive ferrofluid composed of electromagnetic nanohybrids. Nano Lett, 2019, 19: 8343–8356

    Article  CAS  Google Scholar 

  27. Liu M, Ishida Y, Ebina Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015, 517: 68–72

    Article  CAS  Google Scholar 

  28. Lu Q, Bai S, Ding Z, et al. Hydrogel assembly with hierarchical alignment by balancing electrostatic forces. Adv Mater Inter, 2016, 3: 1500687

    Article  Google Scholar 

  29. Shi W, Huang J, Fang R, et al. Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl Mater Interfaces, 2020, 12: 5177–5194

    Article  CAS  Google Scholar 

  30. Hua M, He X. Soft-fiber-reinforced tough and fatigue resistant hydrogels. Matter, 2021, 4: 1755–1757

    Article  CAS  Google Scholar 

  31. Ni J, Lin S, Qin Z, et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. Matter, 2021, 4: 1919–1934

    Article  CAS  Google Scholar 

  32. Yang H, Ji M, Yang M, et al. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter, 2021, 4: 1935–1946

    Article  CAS  Google Scholar 

  33. Li X, Cui K, Kurokawa T, et al. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Sci Adv, 2021, 7: eabe8210

    Article  CAS  Google Scholar 

  34. Rong M, Liu H, Scaraggi M, et al. High lubricity meets load capacity: Cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater, 2020, 30: 2004062

    Article  CAS  Google Scholar 

  35. Chen Q, Zhang X, Chen K, et al. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids. Chem Eng J, 2022, 430: 133036

    Article  CAS  Google Scholar 

  36. Frank E, Steudle LM, Ingildeev D, et al. Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chem Int Ed, 2014, 53: 5262–5298

    Article  CAS  Google Scholar 

  37. Luo H, Xiong G, Yang Z, et al. Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cyto-compatibility. J Mech Behav BioMed Mater, 2014, 29: 103–113

    Article  CAS  Google Scholar 

  38. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26: 3995–4021

    Article  CAS  Google Scholar 

  39. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014, 114: 5057–5115

    Article  CAS  Google Scholar 

  40. Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    Article  CAS  Google Scholar 

  41. Fu Y, Han C, Ni Q. Effects of surface modification on the dispersion property of VGC. Chin J Chem, 2009, 27: 1110–1116

    Article  CAS  Google Scholar 

  42. Holloway JL, Lowman AM, Palmese GR. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter, 2013, 9: 826–833

    Article  CAS  Google Scholar 

  43. Bodugoz-Senturk H, Choi J, Oral E, et al. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials, 2008, 29: 141–149

    Article  CAS  Google Scholar 

  44. Bodugoz-Senturk H, Macias CE, Kung JH, et al. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials, 2009, 30: 589–596

    Article  CAS  Google Scholar 

  45. Chen K, Chen G, Wei S, et al. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater Sci Eng-C, 2018, 91: 579–588

    Article  CAS  Google Scholar 

  46. Gan S, Lin W, Zou Y, et al. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydrate Polyms, 2020, 229: 115523

    Article  CAS  Google Scholar 

  47. Yu Y, Zhu C, Liu Y, et al. Synthesis and characterization of N-maleyl chitosan-cross-linked poly(acrylamide)/montmorillonite nanocomposite hydrogels. Polym-Plasts Tech Eng, 2011, 50: 525–529

    Article  CAS  Google Scholar 

  48. Bai R, Yang J, Morelle XP, et al. Flaw-insensitive hydrogels under static and cyclic loads. Macromol Rapid Commun, 2019, 40: 1800883

    Article  Google Scholar 

  49. Yang W, Sherman VR, Gludovatz B, et al. On the tear resistance of skin. Nat Commun, 2015, 6: 6649

    Article  CAS  Google Scholar 

  50. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve, 2011, 44: 318–331

    Article  CAS  Google Scholar 

  51. Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng Part B-Rev, 2011, 17: 213–227

    Article  CAS  Google Scholar 

  52. Chen Y, Jiao C, Peng X, et al. Biomimetic anisotropic poly(vinyl alcohol) hydrogels with significantly enhanced mechanical properties by freezing-thawing under drawing. J Mater Chem B, 2019, 7: 3243–3249

    Article  CAS  Google Scholar 

  53. Wang X, Fang J, Zhu W, et al. Bioinspired highly anisotropic, ultra-strong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Adv Funct Mater, 2021, 31: 2010068

    Article  CAS  Google Scholar 

  54. Sun Q, Ma S, Lin P, et al. Anisotropic hydrogels with high mechanical strength by stretching-induced oriented crystallization and drying. ACS Appl Polym Mater, 2020, 2: 2142–2150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20211243), Jiangsu Provincial Key Research and Development Program (BE2022708), the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment (SKLTKF21B15), and the Open Fund of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics (LSL-2107).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen K and Zhang D guided the project. Chen Q carried out the experimental section and wrote the paper with support from Chen K. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Kai Chen  (陈凯) or Dekun Zhang  (张德坤).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of this paper.

Qin Chen is studying for her PhD degree at China University of Mining and Technology. Her current research interests mainly focus on the bionic design of functional materials, the tribology of soft materials, and the intelligent fault diagnosis of mechanical equipment.

Kai Chen received his PhD degree from China University of Mining and Technology in 2015. He is currently an associate professor at China University of Mining and Technology. His current research interests cover the bio-nic design of functional materials, tribology of soft materials, bio-tribology of artificial joints, and wear-resistant materials.

Dekun Zhang received his PhD degree from China University of Mining and Technology in 2003. He has been a professor at China University of Mining and Technology since 2008. His current research interests cover fretting, friction reliability of mining machinery, bio-tribology of artificial joints, bionic design of functional materials, and wear-resistant materials.

Support Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Chen, K., Wu, M. et al. Tough and fatigue-resistant anisotropic hydrogels via fiber reinforcement and magnetic field induction. Sci. China Mater. 66, 4841–4852 (2023). https://doi.org/10.1007/s40843-023-2639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2639-0

Keywords

Navigation