Skip to main content
Log in

Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries

构建富氟杂化界面实现水性锌电池负极的防腐和均匀锌沉积

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Rechargeable aqueous zinc (Zn) metal batteries (AZMBs) have become the most promising option for large-scale energy storage systems because they utilize low-cost, high-safety aqueous electrolytes. However, the poor reversibility of the Zn anode due to inferior stability in aqueous electrolytes has severely impeded the practical applications of AZMBs. Herein, we propose a fluorine (F)-rich hybrid artificial solid electrolyte interphase (ASEI) to solve the above issue by coating Zn surface with fluorinated graphite and exploiting the interfacial reaction between fluorinated graphite and Zn. The interaction between the electrolyte and Zn was effectively restricted by the hydrophobic fluorinated graphite, thereby improving the corrosion resistance of the Zn anode. Furthermore, the F-rich hybrid interphase comprising fluorinated graphite and in situ generated ZnF2 facilitated the desolvation of Zn2+ and homogenized the Zn2+ flux, effectively inhibiting side reactions and dendrite growth. Consequently, the symmetric cell showed stable cycle performance for over 1400 h at 10 mA cm−2 and 1 mA h cm−2 and for 200 h at 30 mA cm−2 and 10 mA h cm−2, significantly exceeding the performance of the cell with a bare Zn anode. Moreover, the Zn/MnO2 full cell with the MnO2 loading of 6 mg cm−2 maintained more than 80% capacity after 2000 cycles at 1 A g−1. This strategy for constructing fluorinated hybrid ASEI is a promising approach for the design of high-performance AZMBs.

摘要

使用低成本、高安全性的水系电解液使二次锌金属电池 (AZMBs)成为大规模储能系统是最有前途的选择. 然而, 锌金属负极在 水系电解液中热力学稳定性较差, 严重阻碍了AZMBs的实际应用. 在 此, 我们通过在锌表面涂覆氟化石墨并利用氟化石墨和锌之间原位的 界面反应开发了一种富氟的杂化人工固体电解质界面来解决上述问 题. 疏水的氟化石墨可以有效地限制电解液和电极之间的接触, 从而显 著提高锌负极的抗腐蚀能力. 同时, 由氟化石墨和锌原位反应生成的 ZnF2共同组成的富氟杂化界面可以促进Zn2+的脱溶剂化作用, 并均匀 化锌离子通量, 从而有效地抑制了副反应发生和枝晶生长. 因此, 在苛 刻的测试条件下(10 mA cm−2, 1 mA h cm−2 和30 mA cm−2, 10 mA h cm−2), 对称电池可以分别稳定地循环1400和200小时以上, 远 远超过了裸锌的性能. 此外, 使用载量为6 mg cm−2的MnO2正极组装的 Zn/MnO2全电池在1 A g−1的条件下经过2000次循环, 仍能保持80%以上 的容量. 本文提出的这种构建富氟杂化ASEI的方法可以为设计高性能 AZMBs提供一种有效的潜在策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Z, Jiang T, Ali M, et al. Rechargeable batteries for grid scale energy storage. Chem Rev, 2022, 122: 16610–16751

    Article  CAS  Google Scholar 

  2. Li G, Sun L, Zhang S, et al. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects. Adv Funct Mater, 2023, 2301291

  3. Chen J, Zhao W, Jiang J, et al. Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater, 2023, 59: 102767

    Article  Google Scholar 

  4. Jin S, Duan F, Wu X, et al. Stabilizing interface pH by mixing electrolytes for high-performance aqueous Zn metal batteries. Small, 2022, 18: 2205462

    Article  CAS  Google Scholar 

  5. Yang W, Yang Y, Yang H, et al. Regulating water activity for rechargeable zinc-ion batteries: Progress and perspective. ACS Energy Lett, 2022, 7: 2515–2530

    Article  CAS  Google Scholar 

  6. Zhou M, Chen Y, Fang G, et al. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater, 2022, 45: 618–646

    Article  Google Scholar 

  7. Naveed A, Rasheed T, Raza B, et al. Addressing thermodynamic instability of Zn anode: Classical and recent advancements. Energy Storage Mater, 2022, 44: 206–230

    Article  Google Scholar 

  8. Li C, Jin S, Archer LA, et al. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule, 2022, 6: 1733–1738

    Article  Google Scholar 

  9. Zhang Y, Wan G, Lewis NHC, et al. Water or anion? Uncovering the Zn2+ solvation environment in mixed Zn(TFSI)2 and LiTFSI water-in-salt electrolytes. ACS Energy Lett, 2021, 6: 3458–3463

    Article  CAS  Google Scholar 

  10. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater, 2018, 17: 543–549

    Article  CAS  Google Scholar 

  11. Burton TF, Jommongkol R, Zhu Y, et al. Water-in-salt electrolytes towards sustainable and cost-effective alternatives: Example for zinc-ion batteries. Curr Opin Electrochem, 2022, 35: 101070

    Article  CAS  Google Scholar 

  12. Zhang B, Qin L, Fang Y, et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci Bull, 2022, 67: 955–962

    Article  CAS  Google Scholar 

  13. Chan CY, Wang Z, Li Y, et al. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl Mater Inter, 2021, 13: 30594–30602

    Article  CAS  Google Scholar 

  14. Zhu R, Yang H, Cui W, et al. High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn-MnO2 batteries via a modified mechanical suppression effect. J Mater Chem A, 2022, 10: 3122–3133

    Article  CAS  Google Scholar 

  15. Han D, Wang Z, Lu H, et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater, 2022, 12: 2102982

    Article  CAS  Google Scholar 

  16. Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater, 2022, 12: 2103557

    Article  CAS  Google Scholar 

  17. Chen K, Guo H, Li W, et al. Dual porous 3D zinc anodes toward dendrite-free and long cycle life zinc-ion batteries. ACS Appl Mater Inter, 2021, 13: 54990–54996

    Article  CAS  Google Scholar 

  18. Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater, 2022, 34: 2106897

    Article  CAS  Google Scholar 

  19. Li C, Shi X, Liang S, et al. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem Eng J, 2020, 379: 122248

    Article  CAS  Google Scholar 

  20. Zhou J, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv Mater, 2022, 34: 2200782

    Article  CAS  Google Scholar 

  21. He H, Qin H, Wu J, et al. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater, 2021, 43: 317–336

    Article  Google Scholar 

  22. Choi C, Park JB, Park JH, et al. Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in-situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes. Chem Eng J, 2023, 456: 141015

    Article  CAS  Google Scholar 

  23. Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun, 2021, 12: 6606

    Article  CAS  Google Scholar 

  24. Wang Z, Chen H, Wang H, et al. In situ growth of a metal-organic framework-based solid electrolyte interphase for highly reversible Zn anodes. ACS Energy Lett, 2022, 7: 4168–4176

    Article  CAS  Google Scholar 

  25. Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci, 2019, 12: 1938–1949

    Article  CAS  Google Scholar 

  26. Li B, Yang K, Ma J, et al. Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew Chem Int Ed, 2022, 61: e202212587

    Article  CAS  Google Scholar 

  27. Zheng X, Liu Z, Sun J, et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat Commun, 2023, 14: 76

    Article  CAS  Google Scholar 

  28. Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater, 2018, 8: 1801090

    Article  Google Scholar 

  29. Guo W, Zhang Y, Tong X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater Today Energy, 2021, 20: 100675

    Article  CAS  Google Scholar 

  30. Xia A, Pu X, Tao Y, et al. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl Surf Sci, 2019, 481: 852–859

    Article  CAS  Google Scholar 

  31. Qin R, Wang Y, Yao L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy, 2022, 98: 107333

    Article  CAS  Google Scholar 

  32. Li Y, Yang S, Du H, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J Mater Chem A, 2022, 10: 14399–14410

    Article  Google Scholar 

  33. Cao L, Li D, Pollard T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat Nanotechnol, 2021, 16: 902–910

    Article  CAS  Google Scholar 

  34. Han J, Euchner H, Kuenzel M, et al. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries. ACS Energy Lett, 2021, 6: 3063–3071

    Article  CAS  Google Scholar 

  35. Liang G, Zhu J, Yan B, et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ Sci, 2022, 15: 1086–1096

    Article  CAS  Google Scholar 

  36. Wang H, Chen Y, Yu H, et al. A multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv Funct Mater, 2022, 32: 2205600

    Article  CAS  Google Scholar 

  37. Qiu N, Chen H, Yang Z, et al. Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim Acta, 2018, 272: 154–160

    Article  CAS  Google Scholar 

  38. Deng C, Xie X, Han J, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv Funct Mater, 2020, 30: 2000599

    Article  CAS  Google Scholar 

  39. Qiu M, Jia H, Lan C, et al. An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering. Energy Storage Mater, 2022, 45: 1175–1182

    Article  Google Scholar 

  40. Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun, 2019, 10: 900

    Article  Google Scholar 

  41. Chia X, Ambrosi A, Otyepka M, et al. Fluorographites (CFx)n exhibit improved heterogeneous electron-transfer rates with increasing level of fluorination: Towards the sensing of biomolecules. Chem Eur J, 2014, 20: 6665–6671

    Article  CAS  Google Scholar 

  42. Liang X, Lao M, Pan D, et al. Facile synthesis and spectroscopic characterization of fluorinated graphene with tunable C/F ratio via Zn reduction. Appl Surf Sci, 2017, 400: 339–346

    Article  CAS  Google Scholar 

  43. Ma L, Li Q, Ying Y, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater, 2021, 33: 2007406

    Article  CAS  Google Scholar 

  44. Kasperek J, Lenglet M. Identification of thin films on zinc substrates by FTIR and Raman spectroscopies. Rev Met Paris, 1997, 94: 713–719

    Article  CAS  Google Scholar 

  45. Wang S, Yang Z, Chen B, et al. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater, 2022, 47: 491–499

    Article  Google Scholar 

  46. Cai Z, Ou Y, Wang J, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater, 2020, 27: 205–211

    Article  Google Scholar 

  47. Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater, 2021, 33: 2007416

    Article  CAS  Google Scholar 

  48. Huo X, Xu L, Xie K, et al. Cation-selective interface for kinetically enhanced dendrite-free Zn anodes. Adv Energy Mater, 2023, 13: 2203066

    Article  CAS  Google Scholar 

  49. Dong N, Zhang F, Pan H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci, 2022, 13: 8243–8252

    Article  CAS  Google Scholar 

  50. Yan H, Li S, Nan Y, et al. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv Energy Mater, 2021, 11: 2100186

    Article  CAS  Google Scholar 

  51. Zhou Y, Li G, Feng S, et al. Regulating Zn ion desolvation and deposition chemistry toward durable and fast rechargeable Zn metal batteries. Adv Sci, 2023, 10: 2205874

    Article  CAS  Google Scholar 

  52. Tan L, Wei C, Zhang Y, et al. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J, 2022, 431: 134277

    Article  CAS  Google Scholar 

  53. Zhou J, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater, 2021, 33: 2101649

    Article  CAS  Google Scholar 

  54. Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater, 2021, 33: 2007388

    Article  CAS  Google Scholar 

  55. Hao J, Li B, Li X, et al. An in-depth study ofZn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater, 2020, 32: 2003021

    Article  CAS  Google Scholar 

  56. Gong Z, Jiang K, Wang P, et al. Stable and dendrite-free Zn anode with artificial desolvation interface layer toward high-performance Zn-ion capacitor. J Energy Chem, 2022, 72: 143–148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22075048 and 52201201), Shaanxi Yanchang Petroleum Co., Ltd. (18529), Yiwu Research Institute of Fudan University (20-1-06), Shanghai International Collaboration Research Project (19520713900), and the State Key Lab of Advanced Metals and Materials (2022Z-11).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang L, Zhang L and Lu H conceived and designed this work. Wang L performed the experiments and wrote the paper, Meng Y, Kang J, Zhang Y and Zhang J provided valuable advice and participated in helpful discussions. All authors discussed the data and commented on the manuscript. The project was supervised by Zhang L and Lu H. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Long Zhang  (张隆) or Hongbin Lu  (卢红斌).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Lequan Wang received his Master’s degree from Sichuan University. He is currently a Doctor’s degree candidate at Fudan University. His research interest mainly focuses on the interfacial engineering of zinc anodes for high-performance aqueous zinc-ion batteries.

Long Zhang is currently an associate professor at the University of Science and Technology Beijing. He received his PhD degree from the State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University in 2019. He then worked as a postdoctoral fellow at the College of Engineering, Peking University from 2019 to 2021. During this period, he obtained the financial support of the Postdoctoral Innovation Talent Support Program. His research focuses on the design and chemical synthesis of functional nanomaterials in the fields of energy storage applications.

Hongbin Lu is a professor at the Department of Macromolecular Science, Fudan University, China. He received his PhD degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 1999. He worked as a postdoctoral fellow at the University of Southern California in America from 2001 to 2004. Currently, his research focuses on the synthesis of low-dimensional nanomaterials and their applications in energy storage, thermal management, catalysis and composite materials.

Electronic supplementary material

40843_2023_2598_MOESM1_ESM.pdf

Supporting Information: Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, L., Meng, Y. et al. Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries. Sci. China Mater. 66, 4595–4604 (2023). https://doi.org/10.1007/s40843-023-2598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2598-0

Keywords

Navigation