Skip to main content
Log in

Zwitterion-doped self-supporting single-ion conducting polymer electrolyte membrane for dendrite-free lithium metal secondary batteries

两性分子掺杂自支撑单离子传导聚合物电解质及其锂金属二次电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Exploring self-supporting polymer electrolyte membranes that exhibit both high ionic conductivity and cation transference poses a challenge for lithium metal secondary batteries. In this research, we utilized poly(4,4′-(diphenyl ether)-5,5′-bibenzimidazole) (O-PBI) and grafted it with lithium propanesulfonyl(trifluoromethyl sulfonyl)imide (PBI-g-LiPSI) through a nucleophilic substitution reaction involving sodium 3-iodopropanesulfonyl(trifluoromethyl sulfonyl)imide (NaIPSI) and pre-activated O-PBI with lithium hydride. This process was followed by a lithium-ion exchange. The excellent leaving ability of the iodine substituent in NaIPSI allowed for a grafting ratio close to 100%, resulting in the highest possible lithium content. Moreover, the strong π−π interaction among the aromatic polybenzimidazole facilitated the formation of a self-supporting polymer electrolyte membrane, even when doped with zwitterionic 1-propanesulfonyl (trifluoromethyl sulfonyl)imide-3-methylimidazolium (MeImPSI). The ionic conductivities and 7Li nuclear magnetic resonance chemical shifts of MeImPSI-doped PBI-g-LiPSIs showed a linear increase with the doping mass fraction of zwitterion. This finding confirmed that the zwitterion can act as a dipole, reducing the electrostatic attraction between the lithium cation and immobilized bis(sulfonyl)imide anion. Among different doping ratios, a 25-wt% MeImPSI-doped PBI-g-LiPSI exhibited the highest ionic conductivity of 0.68 mS cm−1 at room temperature, along with a lithium transference number of 0.95. To assess the performance of the electrolyte as well as separator, a lithium symmetric cell was assembed using the 25-wt% MeImPSI-doped PBI-g-LiPSI. The cell exhibited stable performance during galvanostatic cycling at ±0.5 mA cm−2 with a charge-discharge capacity of 2 mA h cm−2, for an impressive duration of 2100 h. Additionally, we successfully demonstrated the application of single-ion conducting lithium metal secondary batteries. The film-forming property of PBI, combined with the enhanced ionic mobility provided by the zwitterion contributed to the overall excellent performance of the single-ion conducting polymer electrolyte system.

摘要

制备高离子电导率的自支撑单离子传导聚合物电解质仍然面临挑战. 本文中, 我们通过聚[4,4′-(二苯醚基)-5,5′-联苯并咪唑]侧链化学接枝丙烷磺酰(三氟甲基磺酰)亚胺锂, 得到自支撑聚合物电解质(PBIg-LiPSI). PBI-g-LiPSI具有优异的成膜性能, 实验发现, 掺杂两性分子1-甲基-3-丙烷磺酰(三氟甲基磺酰)亚胺咪唑内盐(MeImPSI)后, 离子电导率和7Li核磁共振峰的化学位移都随着掺杂两性分子的质量分数呈线性递增. PBI-g-LiPSI/MeImPSI (25 wt%)凝胶自支撑单离子传导聚合物电解质的室温离子电导率是0.68 mS cm−1, 锂离子迁移数是0.95. 使用该电解质隔膜的金属锂对称电池在±0.5 mA cm−2@2 mA h cm−2运行2100小时未发生短路, 金属锂二次电池可在1 C下稳定循环500圈. 本工作开发了一种用于金属锂二次电池的两性分子掺杂自支撑单离子传导聚合物电解质.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc, 2013, 135: 4450–4456

    CAS  Google Scholar 

  2. Wu F, Yuan YX, Cheng XB, et al. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Mater, 2018, 15: 148–170

    Google Scholar 

  3. Sun X, Zhang X, Ma Q, et al. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew Chem Int Ed, 2020, 59: 6665–6674

    CAS  Google Scholar 

  4. Horstmann B, Shi J, Amine R, et al. Strategies towards enabling lithium metal in batteries: Interphases and electrodes. Energy Environ Sci, 2021, 14: 5289–5314

    CAS  Google Scholar 

  5. Zhang T, Sang Z, Yin L, et al. High-capacity, high-rate, and dendrite-free lithium metal anodes based on a 3D mixed electronic-ionic conductive and lithiophilic scaffold. Sci China Mater, 2022, 65: 2989–2996

    CAS  Google Scholar 

  6. Lin G, Bai Z, Liu C, et al. Mechanically robust, nonflammable and surface cross-linking composite membranes with high wettability for dendrite-proof and high-safety lithium-ion batteries. J Membrane Sci, 2022, 647: 120262

    CAS  Google Scholar 

  7. Guo Q, Xu F, Shen L, et al. Poly(ethylene glycol) brush on Li6.4La3−Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J Power Sources, 2021, 498: 229934

    CAS  Google Scholar 

  8. Wei Z, Chen S, Wang J, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J Power Sources, 2018, 394: 57–66

    CAS  Google Scholar 

  9. Doyle M, Fuller TF, Newman J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim Acta, 1994, 39: 2073–2081

    CAS  Google Scholar 

  10. Klett M, Giesecke M, Nyman A, et al. Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ7Li NMR imaging. J Am Chem Soc, 2012, 134: 14654–14657

    CAS  Google Scholar 

  11. Krachkovskiy SA, Bazak JD, Werhun P, et al. Visualization of steady-state ionic concentration profiles formed in electrolytes during Li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J Am Chem Soc, 2016, 138: 7992–7999

    CAS  Google Scholar 

  12. Bai P, Li J, Brushett FR, et al. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci, 2016, 9: 3221–3229

    CAS  Google Scholar 

  13. Takamatsu D, Yoneyama A, Asari Y, et al. Quantitative visualization of salt concentration distributions in lithium-ion battery electrolytes during battery operation using X-ray phase imaging. J Am Chem Soc, 2018, 140: 1608–1611

    CAS  Google Scholar 

  14. Wen K, Xin C, Guan S, et al. Ion-dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv Mater, 2022, 34: 2202143

    CAS  Google Scholar 

  15. Du D, Li H, Xu H, et al. Lithium propanesulfonyl(trifluoromethylsulfonyl)imide grafted polybenzimidazole as a self-supporting single ion conducting polymer electrolyte membrane for lithium metal secondary batteries. J Alloys Compd, 2021, 881: 160573

    CAS  Google Scholar 

  16. Zhou M, Liu R, Jia D, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultra-long-life and dendrite-free lithium-metal batteries. Adv Mater, 2021, 33: 2100943

    CAS  Google Scholar 

  17. Du D, Hu X, Zeng D, et al. Water-insoluble side-chain-grafted single ion conducting polymer electrolyte for long-term stable lithium metal secondary batteries. ACS Appl Energy Mater, 2019, 3: 1128–1138

    Google Scholar 

  18. Borzutzki K, Thienenkamp J, Diehl M, et al. Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries. J Mater Chem A, 2019, 7: 188–201

    CAS  Google Scholar 

  19. Chen Y, Ke H, Zeng D, et al. Superior polymer backbone with poly (arylene ether) over polyamide for single ion conducting polymer electrolytes. J Membrane Sci, 2017, 525: 349–358

    CAS  Google Scholar 

  20. Cao C, Li Y, Feng Y, et al. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J Mater Chem A, 2017, 5: 22519–22526

    CAS  Google Scholar 

  21. Pan Q, Zhang W, Pan M, et al. Construction of a lithium ion transport network in cathode with lithiated bis(benzene sulfonyl)imide based single ion polymer ionomers. J Power Sources, 2015, 283: 279–288

    CAS  Google Scholar 

  22. Wang Z, Shen L, Deng S, et al. 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater, 2021, 33: 2100353

    CAS  Google Scholar 

  23. Xu F, Deng S, Guo Q, et al. Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2∥Li batteries with rigid-flexible coupling interphase. Small Methods, 2021, 5: 2100262

    CAS  Google Scholar 

  24. Wang Z, Guo Q, Jiang R, et al. Porous poly(vinylidene fluoride) supported three-dimensional poly(ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chem Eng J, 2022, 435: 135106

    CAS  Google Scholar 

  25. Tikekar MD, Choudhury S, Tu Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy, 2016, 1: 1–7

    Google Scholar 

  26. Deng K, Zeng Q, Wang D, et al. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J Mater Chem A, 2020, 8: 1557–1577

    CAS  Google Scholar 

  27. Cardoso J, Huanosta A, Manero O. Ionic conductivity studies on saltpolyzwitterion systems. Macromolecules, 1991, 24: 2890–2895

    CAS  Google Scholar 

  28. Yoshizawa M, Hirao M, Ito-Akita K, et al. Ion conduction in zwitter-ionic-type molten salts and their polymers. J Mater Chem, 2001, 11: 1057–1062

    CAS  Google Scholar 

  29. Yoshizawa M, Narita A, Ohno H. Design of ionic liquids for electrochemical applications. Aust J Chem, 2004, 57: 139–144

    CAS  Google Scholar 

  30. Narita A, Shibayama W, Ohno H. Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices. J Mater Chem, 2006, 16: 1475–1482

    CAS  Google Scholar 

  31. Yoshizawa-Fujita M, Tamura T, Takeoka Y, et al. Low-melting zwitterion: Effect of oxyethylene units on thermal properties and conductivity. Chem Commun, 2011, 47: 2345–2347

    CAS  Google Scholar 

  32. Tiyapiboonchaiya C, Pringle JM, Sun J, et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat Mater, 2004, 3: 29–32

    CAS  Google Scholar 

  33. Byrne N, Howlett PC, MacFarlane DR, et al. The zwitterion effect in ionic liquids: Towards practical rechargeable lithium-metal batteries. Adv Mater, 2005, 17: 2497–2501

    CAS  Google Scholar 

  34. Byrne N, Pringle JM, Tiyapiboonchaiya C, et al. The additive effect of zwitterion and nano-particles on ion dissociation in polyelectrolytes. Electrochim Acta, 2005, 50: 2733–2738

    CAS  Google Scholar 

  35. Soberats B, Yoshio M, Ichikawa T, et al. Zwitterionic liquid crystals as 1D and 3D lithium ion transport media. J Mater Chem A, 2015, 3: 11232–11238

    CAS  Google Scholar 

  36. Lind F, Rebollar L, Bengani-Lutz P, et al. Zwitterion-containing ionogel electrolytes. Chem Mater, 2016, 28: 8480–8483

    CAS  Google Scholar 

  37. Peng X, Liu H, Yin Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun, 2016, 7: 11782

    CAS  Google Scholar 

  38. Horiuchi S, Zhu H, Forsyth M, et al. Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries. Electrochim Acta, 2017, 241: 272–280

    CAS  Google Scholar 

  39. Lee CJ, Wu H, Hu Y, et al. Ionic conductivity of polyelectrolyte hydrogels. ACS Appl Mater Interfaces, 2018, 10: 5845–5852

    CAS  Google Scholar 

  40. Yu Y, Lu F, Sun N, et al. Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter, 2018, 14: 6313–6319

    CAS  Google Scholar 

  41. D’Angelo AJ, Panzer MJ. Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem Mater, 2019, 31: 2913–2922

    Google Scholar 

  42. Eshetu GG, Mecerreyes D, Forsyth M, et al. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol Syst Des Eng, 2019, 4: 294–309

    CAS  Google Scholar 

  43. Yu Y, Sun N, Wu A, et al. Zwitterion-containing electrolytes with semi-crystalline PVDF-co-HFP as a matrix for safer lithium-ion batteries. J Mol Liquids, 2019, 282: 340–346

    CAS  Google Scholar 

  44. Lu F, Li G, Yu Y, et al. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chem Eng J, 2020, 384: 123237

    CAS  Google Scholar 

  45. Nguyen MT, Shao Q. Effects of zwitterionic molecules on ionic association in ethylene oxide-based electrolytes. Fluid Phase Equilib, 2020, 515: 112572

    CAS  Google Scholar 

  46. Potaufeux JE, Odent J, Notta-Cuvier D, et al. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem, 2020, 11: 5914–5936

    CAS  Google Scholar 

  47. Woo HS, Son H, Min JY, et al. Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries. Electrochim Acta, 2020, 345: 136248

    CAS  Google Scholar 

  48. Jin T, Liu M, Su K, et al. Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl Mater Interfaces, 2021, 13: 57489–57496

    CAS  Google Scholar 

  49. Stalin S, Chen P, Li G, et al. Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter, 2021, 4: 3753–3773

    CAS  Google Scholar 

  50. Tseng LH, Wang PH, Li WC, et al. Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible supercapacitors. J Power Sources, 2021, 516: 230624

    CAS  Google Scholar 

  51. Yang J, Xu Z, Wang J, et al. Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at −40°C through hydrated lithium ion hopping migration. Adv Funct Mater, 2021, 31: 2009438

    CAS  Google Scholar 

  52. Jia Z, Zhao W, Hu S, et al. An amphoteric betaine electrolyte additive enabling a stable Zn metal anode for aqueous batteries. Chem Commun, 2022, 58: 8504–8507

    CAS  Google Scholar 

  53. Makhlooghiazad F, O’Dell LA, Porcarelli L, et al. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. Nat Mater, 2022, 21: 228–236

    CAS  Google Scholar 

  54. Xu H, Huang L, Li W, et al. Shielding the electrostatic attraction by design of zwitterionic single ion conducting polymer electrolyte with high dielectric constant. J Membrane Sci, 2022, 651: 120452

    CAS  Google Scholar 

  55. Yan S, Lu Y, Liu F, et al. Zwitterionic matrix with highly delocalized anionic structure as an efficient lithium ion conductor. CCS Chem, 2023, 5: 1612–1622

    CAS  Google Scholar 

  56. D’Angelo AJ, Panzer MJ. Decoupling the ionic conductivity and elastic modulus of gel electrolytes: Fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions. Adv Energy Mater, 2018, 8: 1801646

    Google Scholar 

  57. Schauser NS, Sanoja GE, Bartels JM, et al. Decoupling bulk mechanics and mono- and multivalent ion transport in polymers based on metal-ligand coordination. Chem Mater, 2018, 30: 5759–5769

    CAS  Google Scholar 

  58. Jones SD, Bamford J, Fredrickson GH, et al. Decoupling ion transport and matrix dynamics to make high performance solid polymer electrolytes. ACS Polym Au, 2022, 2: 430–448

    CAS  Google Scholar 

  59. Jones SD, Nguyen H, Richardson PM, et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent Sci, 2022, 8: 169–175

    CAS  Google Scholar 

  60. Kim O, Kim H, Choi UH, et al. One-volt-driven superfast polymer actuators based on single-ion conductors. Nat Commun, 2016, 7: 13576

    CAS  Google Scholar 

  61. Mei W, Rothenberger AJ, Bostwick JE, et al. Zwitterions raise the dielectric constant of soft materials. Phys Rev Lett, 2021, 127: 228001

    CAS  Google Scholar 

  62. Wang J, He Y, Wu Q, et al. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Sci Rep, 2019, 9: 19320

    CAS  Google Scholar 

  63. Hussain A, Li D, Luo Y, et al. Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. J Membrane Sci, 2020, 605: 118108

    CAS  Google Scholar 

  64. Jheng L, Hsu SL, Lin B, et al. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. J Membrane Sci, 2014, 460: 160–170

    CAS  Google Scholar 

  65. Chen H, Wang S, Liu F, et al. Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications. J Membrane Sci, 2020, 596: 117722

    CAS  Google Scholar 

  66. Yan X, Dong Z, Di M, et al. A highly proton-conductive and vanadium-rejected long-side-chain sulfonated polybenzimidazole membrane for redox flow battery. J Membrane Sci, 2020, 596: 117616

    CAS  Google Scholar 

  67. Porcarelli L, Manojkumar K, Sardon H, et al. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim Acta, 2017, 241: 526–534

    CAS  Google Scholar 

  68. Evans J, Vincent CA, Bruce PG. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987, 28: 2324–2328

    CAS  Google Scholar 

  69. Xiao S, He X, Zhao Z, et al. Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. Eur Polym J, 2021, 148: 110350

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22172147).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Xu H performed the synthesis and characterization, and wrote the draft. Li W and Huang L synthesized zwitterion. Zhang Y provided O-PBI. Sun Y supervised the design, data analysis and paper writing. All authors contributed to the general discussion.

Corresponding author

Correspondence to Yubao Sun  (孙玉宝).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

He Xu obtained her BS and MS degrees from Henan Normal University. She is now studying for a doctoral degree at China University of Geosciences (Wuhan), endeavouring to explore the structure-property relationship of single-ion conducting polymer electrolyte.

Yubao Sun received his BS degree from China Three Gorges University and doctoral degree from Wuhan University. He did research on single-ion conducting polymer electrolyte during the postdoctoral research at the National University of Singapore. His research interests focus on solid electrolyte for energy storage and conversion.

Supplementary information Supporting data are available in the online version of the paper.

Electronic supplementary material

40843_2023_2547_MOESM1_ESM.pdf

Zwitterion-doped self-supporting single-ion conducting polymer electrolyte membrane for dendrite-free lithium metal secondary batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Li, W., Huang, L. et al. Zwitterion-doped self-supporting single-ion conducting polymer electrolyte membrane for dendrite-free lithium metal secondary batteries. Sci. China Mater. 66, 3799–3809 (2023). https://doi.org/10.1007/s40843-023-2547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2547-y

Keywords

Navigation