Skip to main content
Log in

Centimeter-sized single crystal of a lead-free halide double perovskite with ferroelastic phase transition-triggered switchable dielectric properties

厘米级无铅卤化物双钙钛矿单晶实现铁弹性相变触发介电开关性质

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Driven by the breakthrough development of lead (Pb)-based halide perovskites, halide double perovskites have also emerged as remarkably multipurpose materials owing to their environmental friendliness, abundant physicochemical properties, and structural tunability. However, despite their recent soaring progress, the realization of switchable dielectrics in this fascinating family remains considerably less explored. In this study, centimeter-sized single crystals of a single-layer halide double perovskite (3-bromopropylaminium)4AgBiBr8 (1) with dimensions up to 20 mm × 17 mm × 5 mm have been successfully synthesized by using the solution cooling method. The single crystal undergoes a ferroelastic phase transition of mmmF2/m defined by the Aizu notation, which is attributed to the synergistic interaction between octahedral distortion and flexible molecular motion according to structural analysis. Noteworthily, it possesses desirable ferroelastic phase transition-triggered switchable dielectric properties near the high temperature of 373 K, which can be switched between two stable dielectric states. Additionally, 1 possesses an indirect-bandgap semiconducting feature and exhibits an X-ray response with a sensitivity of up to 517 µC Gy −1air cm−2 at a 40 V bias voltage. We believe that this study provides another efficient application path for Pb-free halide double perovskites with intelligent functions.

摘要

在铅基卤化物钙钛矿突破性发展的推动下, 卤化物双钙钛矿因其环境友好、 丰富的物理化学性能和结构可调性而成为杰出的多用途材料. 尽管卤化物双钙钛矿的研究取得了飞速的进展, 但在这个吸引人的钙钛矿家族中对可切换电介质的探索仍然很少. 本工作通过溶液冷却法成功地生长了单层卤化物双钙钛矿(3-溴丙胺)4AgBiBr8 (1)的大尺寸单晶, 其尺寸达20 mm × 17 mm × 5 mm. 它经历了由Aizu符号定义的mmmF2/m的铁弹性相变, 通过结构分析可知该铁弹相变是八面体畸变和柔性分子运动协同作用的结果. 值得注意的是, 它在373 K附近具有理想的铁弹性相变触发的可切换电介质性能, 可以在两个稳定的电介质状态之间切换. 而且, 1展现出间接带隙半导体特性和X射线响应, 其中在40 V的偏压下1的灵敏度高达517 µC Gy −1air cm−2). 这项工作为具有智能功能的无铅卤化物双钙钛矿提供了一条有效的应用路径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang HY, Hu CL, Hu ZB, et al. Narrow band gap observed in a molecular ferroelastic: Ferrocenium tetrachloroferrate. J Am Chem Soc, 2020, 142: 3240–3245

    CAS  Google Scholar 

  2. Liu X, Ji C, Wu Z, et al. [C5H12N]SnCl3: A tin halide organic-inorganic hybrid as an above-room-temperature solid-state nonlinear optical switch. Chem Eur J, 2019, 25: 2610–2615

    CAS  Google Scholar 

  3. Zhang J, Han S, Liu X, et al. Successive near-room-temperature dielectric phase transitions in a lead-free hybrid perovskite-like compound. Inorg Chem Front, 2019, 6: 233–237

    CAS  Google Scholar 

  4. Ko DL, Tsai MF, Chen JW, et al. Mechanically controllable nonlinear dielectrics. Sci Adv, 2020, 6: eaaz3180

    CAS  Google Scholar 

  5. Jiao Y, Qin S, Li B, et al. Ferroelasticity mediated energy conversion in strained perovskite films. Adv Elect Mater, 2022, 8: 2200415

    CAS  Google Scholar 

  6. Lu G, Li S, Ding X, et al. Ferroelectric switching in ferroelastic materials with rough surfaces. Sci Rep, 2019, 9: 15834

    Google Scholar 

  7. Zhang ZX, Su CY, Li J, et al. Ferroelastic hybrid bismuth bromides with dual dielectric switches. Chem Mater, 2021, 33: 5790–5799

    CAS  Google Scholar 

  8. Baek SH, Jang HW, Folkman CM, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater, 2010, 9: 309–314

    CAS  Google Scholar 

  9. Chen W, Shi Y, Chen J, et al. Polymerized hybrid perovskites with enhanced stability, flexibility, and lattice rigidity. Adv Mater, 2021, 33: 2104842

    CAS  Google Scholar 

  10. Li J, Zhu Y, Huang PZ, et al. Ferroelasticity in organic-inorganic hybrid perovskites. Chem Eur J, 2022, 28: e202201005

    CAS  Google Scholar 

  11. Liao WQ, Zhang Y, Hu CL, et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nat Commun, 2015, 6: 7338

    Google Scholar 

  12. Gong Y, Li Z, Li H, et al. Ultra-tough room-temperature dielectric switching ionic gels with long-cycle stability. Adv Funct Mater, 2022, 32: 2207452

    CAS  Google Scholar 

  13. Lun MM, Zhang T, Su CY, et al. A ferroelastic molecular rotator [(Me2N(CH2)2NH3)(18-crown-6)]triflate with dual dielectric switches. Mater Chem Front, 2022, 6: 1929–1937

    CAS  Google Scholar 

  14. Blancon JC, Even J, Stoumpos CC, et al. Semiconductor physics of organic-inorganic 2D halide perovskites. Nat Nanotechnol, 2020, 15: 969–985

    CAS  Google Scholar 

  15. Czapla Z, Janczak J, Czupiński O, et al. Structural phase transition and ferroelasticity in (H2NNH3)3CdBr5 crystal. J Phys Chem Solids, 2019, 124: 94–99

    CAS  Google Scholar 

  16. Wu G, Liang R, Zhang Z, et al. 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small, 2021, 17: 2103514

    CAS  Google Scholar 

  17. Zhang Y, Parsonnet E, Fernandez A, et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite. Sci Adv, 2022, 8: eabj5881

    CAS  Google Scholar 

  18. Bu H, He C, Xu Y, et al. Emerging new-generation detecting and sensing of metal halide perovskites. Adv Elect Mater, 2022, 8: 2101204

    CAS  Google Scholar 

  19. Chen Q, Zhang Y, Liu S, et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv Intelligent Syst, 2020, 2: 2000122

    Google Scholar 

  20. Liu X, Ren S, Li Z, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv Funct Mater, 2022, 32: 2202951

    CAS  Google Scholar 

  21. Scott JF. Applications of modern ferroelectrics. Science, 2007, 315: 954–959

    CAS  Google Scholar 

  22. Salje EKH. Ferroelastic materials. Annu Rev Mater Res, 2012, 42: 265–283

    CAS  Google Scholar 

  23. Lipatov A, Li T, Vorobeva NS, et al. Nanodomain engineering for programmable ferroelectric devices. Nano Lett, 2019, 19: 3194–3198

    CAS  Google Scholar 

  24. Gao JX, Hua XN, Li PF, et al. High-temperature ferroelastic phase transition in an organic-inorganic hybrid: [(CH3)3NCH2Br]2−ZnBr4. J Phys Chem C, 2018, 122: 23111–23116

    CAS  Google Scholar 

  25. Xiao X, Zhou J, Song K, et al. Layer number dependent ferroelasticity in 2D Ruddlesden–Popper organic-inorganic hybrid perovskites. Nat Commun, 2021, 12: 1332

    CAS  Google Scholar 

  26. Gao Z, Wu Y, Jiao S, et al. Large dielectric switch effects induced by an order–disorder transformation in cyclopropylamine perchlorate crystals. Nanoscale, 2022, 14: 675–679

    CAS  Google Scholar 

  27. Gong YP, Chen XX, Huang GZ, et al. Ferroelasticity, thermochromism, semi-conductivity, and ferromagnetism in a new layered perovskite: (4-Fluorophenethylaminium)2[CuCl4]. J Mater Chem C, 2022, 10: 5482–5488

    CAS  Google Scholar 

  28. Zhao XG, Yang JH, Fu Y, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc, 2017, 139: 2630–2638

    CAS  Google Scholar 

  29. Pan W, Wu H, Luo J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photon, 2017, 11: 726–732

    CAS  Google Scholar 

  30. Xu Z, Wu H, Li D, et al. A lead-free I-based hybrid double perovskite (I-C4H8NH3)4AgBiI8 for X-ray detection. J Mater Chem C, 2021, 9: 13157–13161

    CAS  Google Scholar 

  31. Connor BA, Leppert L, Smith MD, et al. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J Am Chem Soc, 2018, 140: 5235–5240

    CAS  Google Scholar 

  32. Guo W, Liu X, Han S, et al. Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection. Angew Chem Int Ed, 2020, 59: 13879–13884

    CAS  Google Scholar 

  33. Chen H, Ming S, Li M, et al. First-principles study on the structure, electronic and optical properties of Cs2AgSbxBi1−xCl6 double perovskites. J Phys Chem C, 2021, 125: 11271–11277

    CAS  Google Scholar 

  34. Mao L, Teicher SML, Stoumpos CC, et al. Chemical and structural diversity of hybrid layered double perovskite halides. J Am Chem Soc, 2019, 141: 19099–19109

    CAS  Google Scholar 

  35. Slavney AH, Hu T, Lindenberg AM, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc, 2016, 138: 2138–2141

    CAS  Google Scholar 

  36. Liu X, Xu Z, Long P, et al. A multiaxial layered halide double perovskite ferroelectric with multiple ferroic orders. Chem Mater, 2020, 32: 8965–8970

    CAS  Google Scholar 

  37. Yao Y, Jiang H, Peng Y, et al. High-curie temperature multilayered hybrid double perovskite photoferroelectrics induced by aromatic cation alloying. J Am Chem Soc, 2021, 143: 15900–15906

    CAS  Google Scholar 

  38. Zhang F, Li X, Han S, et al. Bulk single crystal growth of a two-dimensional halide perovskite ferroelectric for highly polarized-sensitive photodetection. Acta Chim Sin, 2022, 80: 237–243

    CAS  Google Scholar 

  39. Chen YY, Gao CH, Yang T, et al. Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications. Chin J Struc Chem, 2022, 41: 2204001–2204011

    CAS  Google Scholar 

  40. Cai HL, Zhang W, Ge JZ, et al. 4-(Cyanomethyl)anilinium perchlorate: A new displacive-type molecular ferroelectric. Phys Rev Lett, 2011, 107: 147601

    Google Scholar 

  41. Sun Z, Chen T, Luo J, et al. Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material. Angew Chem Int Ed, 2012, 51: 3871–3876

    CAS  Google Scholar 

  42. Sun Z, Luo J, Chen T, et al. Distinct molecular motions in a switchable chromophore dielectric 4-N,N-dimethylamino-4-N′-methyl-stilbazolium trifluoromethanesulfonate. Adv Funct Mater, 2012, 22: 4855–4861

    CAS  Google Scholar 

  43. Han S, Zhang J, Teng B, et al. Inorganic-organic hybrid switchable dielectric materials with the coexistence of magnetic anomalies induced by reversible high-temperature phase transition. J Mater Chem C, 2017, 5: 8509–8515

    CAS  Google Scholar 

  44. Siwach P, Sikarwar P, Rajput SA, et al. The effect of halogenated spacer cations on structural symmetry-breaking in 2D halide double perovskites. Chem Commun, 2022, 58: 10504–10507

    CAS  Google Scholar 

  45. Mao L, Guo P, Kepenekian M, et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J Am Chem Soc, 2018, 140: 13078–13088

    CAS  Google Scholar 

  46. Lufaso MW, Woodward PM. Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystlogr B Struct Sci, 2004, 60: 10–20

    Google Scholar 

  47. Tong J, Song Z, Kim DH, et al. Carrier lifetimes of >1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364: 475–479

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22193042, 22125110, 21833010, 22075285, 21875251, 21921001, and U21A2069), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (ZDBS-LY-SLH024), and the Youth Innovation Promotion of Chinese Academy of Sciences (2020307).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yue Z characterized the microcrystal structures, measured the related properties including dielectric and thermogravimetric performances, and wrote this manuscript. Wu F synthesized the bulk single crystal. Li X and Liu Y measured the electronic properties. Li X and Wu F provided some suggestions for the project. Liu X and Luo J designed and directed this project. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Xitao Liu  (刘希涛).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Zengshan Yue received her BS degree from Zhongyuan University of Technology in 2017, majored in materials science and engineering. She is currently pursuing her Master’s degree at Fuzhou University and doing an internship at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Her current research interests focus on ferroelectric hybrid halide perovskite materials and photoelectric functional materials.

Xitao Liu joined Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in July 2014. Before that, he received a PhD degree in materials science under the supervision of Prof. Dong Xu and Prof. Xinqiang Wang at the State Key Laboratory of Crystal Materials, Shandong University. He is a professor of materials physics and chemistry at present, and his current research interests focus on the rational design of ferroic (ferroelectric, ferroelastic and ferromagnetic) semiconducting materials and related physics.

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Electronic supplementary material

40843_2023_2541_MOESM1_ESM.pdf

Centimeter-sized single crystal of a lead-free halide double perovskite with ferroelastic phase transition-triggered switchable dielectric properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Wu, F., Li, X. et al. Centimeter-sized single crystal of a lead-free halide double perovskite with ferroelastic phase transition-triggered switchable dielectric properties. Sci. China Mater. 66, 3977–3983 (2023). https://doi.org/10.1007/s40843-023-2541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2541-8

Keywords

Navigation