Skip to main content
Log in

Photochromic ferroelasticity observed in hybrid lead halide through effective structural regulation

杂化卤化铅光致变色铁弹体

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Ferroelastics, the mechanism analogous to ferroelectrics and ferromagnets, have attracted comprehensive attention owing to the prominent spontaneous strain characteristics. However, the contingency of symmetry changes during the phase transition brings a great challenge to the construction of ferroelastic materials. Currently, most of the ferroelastics are accompanied by various physical properties, such as, photoluminescence and thermochromism. There are few reports of ferroelastics with a photochromic effect. Here, we have successfully designed two hybrid metal halide materials, (pyrrolidinium)PbBr3 (M-1) and (3-hydroxypyrrolidinium)4Pb3Br10 (M-2), both of which possess a two-step dielectric response. The organic-inorganic hybrid materials with structural adjustability provide a good design platform and great possibilities. Meanwhile, the strategy of introducing intermolecular H-bonds increases the phase transition temperature by about 90 K, and also achieves dimensional regulation (3D→2D). Exhilaratingly, the second phase transition of M-2 belongs to the \(2/mF\bar{1}\)-type ferroelastic phase transition according to the Aizu rules, and the ferroelastic domains are observed by a polarizing microscope, which strongly proves the ferroelasticity. Furthermore, we find that these compounds possess a photochromic effect. Especially, the photochromic phenomenon (from milky white to beige) of M-2 is more fascinating, making it a potential candidate for sensors and display devices. The key properties are well-verified through theoretical calculations with high consistency. In short, this photochromic ferroelastic might be a potential candidate in the fields of mechanical switches, shape memory and energy conversion.

摘要

多功能材料是当前交叉研究的热点, 有机-无机杂化材料因其结构多样性为构筑多功能材料提供了极大的可能性. 多功能铁弹材料在机械开关、 形状记忆以及能量转换等领域具有广泛的应用前景, 特别是具备光学电学协同特征的铁弹材料是新器件应用研究的亮点. 尽管目前报道了大量具有光致发光、 热致变色等优异性质的铁弹材料, 但尚未破解将铁弹性和光致变色协同这一难题. 本文通过功能阳离子与卤化铅骨架构筑了具有光致变色效应的铁弹体, (3-hydroxypyrrolidinium)4Pb3Br10, 并通过分子间插入氢键的策略有效提高了材料的相变温度. 该材料还可同时实现两步介电响应, 具有可切换铁弹畴和光致变色的多通道物理特性, 这对显示传感器件的探索研究非常有帮助. 总之, 本研究为多功能物理响应材料的合成提供了多学科交叉研究策略和思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hermes IM, Best A, Winkelmann L, et al. Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. Energy Environ Sci, 2020, 13: 4168–4177

    Article  CAS  Google Scholar 

  2. Su CY, Yao YF, Zhang ZX, et al. The construction of a two-dimensional organic-inorganic hybrid double perovskite ferroelastic with a high Tc and narrow band gap. Chem Sci, 2022, 13: 4794–4800

    Article  CAS  Google Scholar 

  3. Li J, Zhu Y, Huang PZ, et al. Ferroelasticity in organic-inorganic hybrid perovskites. Chem Eur J, 2022, 28: e202201005

    Article  CAS  Google Scholar 

  4. Wu Z, Li S, Yousry YM, et al. Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal. Nat Commun, 2022, 13: 3104

    Article  CAS  Google Scholar 

  5. Xu X, Huang FT, Du K, et al. Multifunctionality of Li2SrNb2O7: Memristivity, tunable rectification, ferroelasticity, and ferroelectricity. Adv Mater, 2022, 34: 2206022

    Article  CAS  Google Scholar 

  6. Han S, Ma Y, Hua L, et al. Soft multiaxial molecular ferroelectric thin films with self-powered broadband photodetection. J Am Chem Soc, 2022, 144: 20315–20322

    Article  CAS  Google Scholar 

  7. Wang Y, Yang D, Ma D, et al. Organic-inorganic hybrid Sn-based perovskite photodetectors with high external quantum efficiencies and wide spectral responses from 300 to 1000 nm. Sci China Mater, 2019, 62: 790–796

    Article  CAS  Google Scholar 

  8. Peng H, Qi JC, Song XJ, et al. An unprecedented azobenzene-based organic single-component ferroelectric. Chem Sci, 2022, 13: 4936–4943

    Article  CAS  Google Scholar 

  9. Zhang ZX, Su CY, Li J, et al. Ferroelastic hybrid bismuth bromides with dual dielectric switches. Chem Mater, 2021, 33: 5790–5799

    Article  CAS  Google Scholar 

  10. Mir SH, Takasaki Y, Engel ER, et al. Ferroelasticity in an organic crystal: A macroscopic and molecular level study. Angew Chem Int Ed, 2017, 56: 15882–15885

    Article  CAS  Google Scholar 

  11. Bari M, Bokov AA, Ye ZG. Ferroelasticity, domain structures and phase symmetries in organic-inorganic hybrid perovskite methylammonium lead chloride. J Mater Chem C, 2020, 8: 9625–9631

    Article  CAS  Google Scholar 

  12. Zhou G, Guo S, Zhao J, et al. Unraveling the mechanochemical synthesis and luminescence in MnII-based two-dimensional hybrid perovskite (C4H9NH3)2PbCl4. Sci China Mater, 2019, 62: 1013–1022

    Article  CAS  Google Scholar 

  13. Miao LP, Ding N, Wang N, et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat Mater, 2022, 21: 1158–1164

    Article  CAS  Google Scholar 

  14. Zhang T, Xu K, Li J, et al. Ferroelectric hybrid organic-inorganic perovskites and their structural and functional diversity. Natl Sci Rev, 2023, 10, DOI: https://doi.org/10.1093/nsr/nwac240

  15. Sun H, Park SK, Diao Y, et al. Molecular mechanisms of superelasticity and ferroelasticity in organic semiconductor crystals. Chem Mater, 2021, 33: 1883–1892

    Article  CAS  Google Scholar 

  16. Hermes IM, Bretschneider SA, Bergmann VW, et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J Phys Chem C, 2016, 120: 5724–5731

    Article  CAS  Google Scholar 

  17. Ai Y, Sun R, Zeng YL, et al. Coexistence of magnetic and electric orderings in a divalent Cr2+-based multiaxial molecular ferroelectric. Chem Sci, 2021, 12: 9742–9747

    Article  CAS  Google Scholar 

  18. Zhang X, Zhao D, Liu X, et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. J Phys Chem Lett, 2021, 12: 8685–8691

    Article  CAS  Google Scholar 

  19. Zhao J, Ying Y, Zeng H, et al. Nanoscale thermal strain engineering-driven ferroelastic domain evolution in CH3NH3PbI3 perovskites. ACS Appl Mater Interfaces, 2023, 15: 12502–12510

    Article  CAS  Google Scholar 

  20. Seki T, Feng C, Kashiyama K, et al. Photoluminescent ferroelastic molecular crystals. Angew Chem Int Ed, 2020, 59: 8839–8843

    Article  CAS  Google Scholar 

  21. Chen XX, Zhang XY, Liu DX, et al. Room-temperature ferroelectric and ferroelastic orders coexisting in a new tetrafluoroborate-based perovskite. Chem Sci, 2021, 12: 8713–8721

    Article  CAS  Google Scholar 

  22. Zhang B, Sun S, Jia Y, et al. Simple visualization of universal ferroelastic domain walls in lead halide perovskites. Adv Mater, 2023, 35: 2208336

    Article  CAS  Google Scholar 

  23. Liu DX, Chen XX, Ye ZM, et al. High- and low-temperature dual ferroelasticity in a new hybrid crystal: (Me3NCH2CH2OH)4[Ni(NCS)6]. Sci China Mater, 2022, 65: 263–267

    Article  CAS  Google Scholar 

  24. Wojciechowska M, Gagor A, Piecha-Bisiorek A, et al. Ferroelectricity and ferroelasticity in organic inorganic hybrid (pyrrolidinium)3[Sb2Cl9]. Chem Mater, 2018, 30: 4597–4608

    Article  CAS  Google Scholar 

  25. Ignatans R, Damjanovic D, Tileli V. Individual Barkhausen pulses of ferroelastic nanodomains. Phys Rev Lett, 2021, 127: 167601

    Article  CAS  Google Scholar 

  26. Zhang ZX, Su CY, Gao JX, et al. Mechanochemistry enables optical-electrical multifunctional response and tunability in two-dimensional hybrid perovskites. Sci China Mater, 2021, 64: 706–716

    Article  CAS  Google Scholar 

  27. Lu X, Chen Z, Cao Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films. Nat Commun, 2019, 10: 3951

    Article  Google Scholar 

  28. Yang Y, Zhang L, Li S, et al. Mild fluctuations in ferroelastic domain switching. Phys Rev B, 2021, 104: 214103

    Article  CAS  Google Scholar 

  29. Liu X, Xu Z, Long P, et al. A multiaxial layered halide double perovskite ferroelectric with multiple ferroic orders. Chem Mater, 2020, 32: 8965–8970

    Article  CAS  Google Scholar 

  30. Fu DW, Gao JX, Huang PZ, et al. Observation of transition from ferroelasticity to ferroelectricity by solvent selective effect in anilinium bromide. Angew Chem Int Ed, 2021, 60: 8198–8202

    Article  CAS  Google Scholar 

  31. Zhang HY, Chen XG, Tang YY, et al. PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics. Chem Soc Rev, 2021, 50: 8248–8278

    Article  CAS  Google Scholar 

  32. Liu HY, Zhang HY, Chen XG, et al. Molecular design principles for ferroelectrics: Ferroelectrochemistry. J Am Chem Soc, 2020, 142: 15205–15218

    Article  CAS  Google Scholar 

  33. Tang YY, Xie Y, Zeng YL, et al. Record enhancement of phase transition temperature realized by H/F substitution. Adv Mater, 2020, 32: 2003530

    Article  CAS  Google Scholar 

  34. Zeng YL, Ai Y, Tang SY, et al. Axial-chiral BINOL multiferroic crystals with coexistence of ferroelectricity and ferroelasticity. J Am Chem Soc, 2022, 144: 19559–19566

    Article  CAS  Google Scholar 

  35. Gong YP, Chen XX, Huang GZ, et al. Ferroelasticity, thermochromism, semi-conductivity, and ferromagnetism in a new layered perovskite: (4-Fluorophenethylaminium)2[CuCl4]. J Mater Chem C, 2022, 10: 5482–5488

    Article  CAS  Google Scholar 

  36. Su C, Lun M, Chen Y, et al. Hybrid optical-electrical perovskite can be a ferroelastic semiconductor. CCS Chem, 2022, 4: 2009–2019

    Article  CAS  Google Scholar 

  37. Kennard RM, Dahlman CJ, DeCrescent RA, et al. Ferroelastic hysteresis in thin films of methylammonium lead iodide. Chem Mater, 2021, 33: 298–309

    Article  CAS  Google Scholar 

  38. Liu H, Chen J, Huang H, et al. Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary. Phys Rev Lett, 2018, 120: 055501

    Article  CAS  Google Scholar 

  39. Pisat AS, Rohrer GS, Salvador PA. Spatial selectivity ofphotodeposition reactions on polar surfaces of centrosymmetric ferroelastic γ-WO3. J Mater Chem A, 2017, 5: 8261–8266

    Article  CAS  Google Scholar 

  40. Qin W, Ali W, Wang J, et al. Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nat Commun, 2023, 14: 256

    Article  CAS  Google Scholar 

  41. Du ZY, Xu TT, Huang B, et al. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermo-responsive dielectric materials. Angew Chem Int Ed, 2015, 54: 914–918

    Article  CAS  Google Scholar 

  42. Moskwa M, Ganczar E, Sobieszczyk P, et al. Temperature-stimulus responsive ferroelastic molecular-ionic crystal: (C8H20N)[BF4]. J Phys Chem C, 2020, 124: 18209–18218

    Article  CAS  Google Scholar 

  43. Huang PZ, Ni HF, Su CY, et al. Thermal-induced ferroelastics in two lead-free organic-inorganic hybrid perovskites. CCS Chem, 2022, 1–10

  44. Jia QQ, Ni HF, Lun MM, et al. Tunable phase transition temperature and nonlinear optical properties of organic-inorganic hybrid perovskites enabled by dimensional engineering. J Mater Chem C, 2022, 10: 16330–16336

    Article  CAS  Google Scholar 

  45. Zeng YL, Huang XQ, Huang CR, et al. Unprecedented 2D homochiral hybrid lead-iodide perovskite thermochromic ferroelectrics with ferroelastic switching. Angew Chem Int Ed, 2021, 60: 10730–10735

    Article  CAS  Google Scholar 

  46. Chen Y, Gao C, Yang T, et al. Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications. Chin J Struct Chem, 2022, 41: 2204001

    CAS  Google Scholar 

  47. Ye H, Chen XX, Liu DX, et al. Subtly tuning intermolecular hydrogen bonds in hybrid crystals to achieve ultrahigh-temperature molecular ferroelastic. Chem Sci, 2022, 13: 14124–14131

    Article  CAS  Google Scholar 

  48. Yue CY, Sun HX, Liu QX, et al. Organic cation directed hybrid lead halides of zero-dimensional to two-dimensional structures with tunable photoluminescence properties. Inorg Chem Front, 2019, 6: 2709–2717

    Article  CAS  Google Scholar 

  49. Zhou J, Li M, Ning L, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies. J Phys Chem Lett, 2019, 10: 1337–1341

    Article  CAS  Google Scholar 

  50. Liu Y, Han S, Wang J, et al. Spacer cation alloying of a homo-conformational carboxylate trans isomer to boost in-plane ferroelectricity in a 2D hybrid perovskite. J Am Chem Soc, 2021, 143: 2130–2137

    Article  CAS  Google Scholar 

  51. Kanwat A, Ghosh B, Ng SE, et al. Reversible photochromism in 〈110〉 oriented layered halide perovskite. ACS Nano, 2022, 16: 2942–2952

    Article  CAS  Google Scholar 

  52. Lee S, Zhou C, Neu J, et al. Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties. Chem Mater, 2019, 32: 374–380

    Article  Google Scholar 

  53. Zheng HW, Yang DD, Shi YS, et al. Conformation- and coordination mode-dependent stimuli-responsive salicylaldehyde hydrazone Zn(II) complexes. Inorg Chem, 2023, 62: 6323–6331

    Article  CAS  Google Scholar 

  54. Martin CR, Park KC, Leith GA, et al. Stimuli-modulated metal oxidation states in photochromic MOFs. J Am Chem Soc, 2022, 144: 4457–4468

    Article  CAS  Google Scholar 

  55. Smith MD, Watson BL, Dauskardt RH, et al. Broadband emission with a massive Stokes shift from sulfonium Pb–Br hybrids. Chem Mater, 2017, 29: 7083–7087

    Article  CAS  Google Scholar 

  56. Jing CQ, Li JZ, Xu T, et al. Organic cations directed 1D [Pb3Br10]4− chains: Syntheses, crystal structures, and photoluminescence properties. CrystEngComm, 2021, 23: 292–298

    Article  CAS  Google Scholar 

  57. Aizu K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Jpn, 1969, 27: 387–396

    Article  CAS  Google Scholar 

  58. Meng QR, Xu WJ, Hu WH, et al. An unprecedented hexagonal double perovskite organic-inorganic hybrid ferroelastic material: (Piperidinium)2[KBiCl6]. Chem Commun, 2021, 57: 6292–6295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang Normal University, and the National Natural Science Foundation of China (21991141) and the Natural Science Foundation of Zhejiang Province (LZ20B010001).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jia QQ, Guo Q and Fu DW designed the experiments; Jia QQ and Teri G performed the experiments; Jia QQ and Teri G performed the data analysis; Jia QQ and Guo Q wrote the paper with support from Fu DW. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Qiang Guo  (郭强), Yi Zhang  (张毅) or Da-Wei Fu  (付大伟).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Gele Teri is a PhD candidate at the Institute for Science and Applications of Molecular Ferroelectrics, Zhejiang Normal University. His current research mainly focuses on multifunctional perovskite materials with ferroelctric and ferroelastic.

Da-Wei Fu is a professor at Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University. He was awarded the National Excellent Young Scientists Fund and a new century talent of the Ministry of Education. His current research interest focuses on high-performance molecular dielectric/ferroelectric materials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teri, G., Jia, QQ., Guo, Q. et al. Photochromic ferroelasticity observed in hybrid lead halide through effective structural regulation. Sci. China Mater. 66, 3687–3695 (2023). https://doi.org/10.1007/s40843-023-2499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2499-x

Keywords

Navigation