Skip to main content
Log in

Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst

有机微结构诱导的分级多孔g-C3N4光催化剂

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

It is necessary to construct hierarchically porous photocatalysts to ensure high light absorption and electrochemical kinetics in photocatalysis. Carbon nitride (g-C3N4) appears to be a favorable choice, especially the tunable hollow micro/nanostructure. However, the facile preparation of g-C3N4 with hierarchical pores still faces challenge. Here, we firstly report a facile preparation of hierarchically porous g-C3N4 with uniform organic microstructure as a soft template. The template is in situ formed in thiourea precursor solution, and its similar π-conjugated structure to g-C3N4 makes it effective in modifying the condensation of g-C3N4. The layer thickness of the as-prepared g-C3N4 is about 3–4 nm. And the resultant g-C3N4 possesses hierarchical meso/macropores with a specific surface area of 27.34 m2 g−1 and pore volume of 0.18 cm3 g−1, approximately 6.2 and 9.0 times, respectively, higher than that of the unmodified one. This favors the charge/mass transport process, hence rendering the catalyst a 2.4-fold enhancement in photodegrading organic pollutant with H+ and ·O 2 as the predominant species. At the same time, the photostability can be guaranteed with only 20% loss of its efficiency after long-term use.

摘要

为了保证光催化的高光吸收和电化学动力学, 构建分级多孔光 催化剂十分必要. 类石墨相氮化碳(g-C3N4)易于合成、理化性质稳定、 稳定性好和带隙合适等优点, 特别是其可调的微/纳米结构, 使其成为 分级多孔光催化剂一个很好的选择. 然而, 具有层次孔的g-C3N4的简易 制备仍然是一个难点. 本文中, 我们首次用均匀的有机微结构作为软模 板, 用简单方法制备了分级多孔g-C3N4. 该有机微纳结构模板是在硫脲 前驱体溶液中原位形成的, 与g-C3N4相似的π共轭结构使其能够有效修 饰g-C3N4的分子结构. 结果表明, 合成的g-C3N4具有分级的中孔和大孔, 比表面积为27.34 m2 g−1, 孔体积为0.18 cm3 g−1, 分别是未改性g-C3N4的 6.2倍和9.0倍. 这种分级多孔结构有利于电荷/质量传输过程, 使其光降 解有机污染物能力增强了2.4倍. 同时, 此光催化剂具有良好的光稳定 性, 长期使用100分钟后效率仅损失20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Detz RJ, Reek JNH, van der Zwaan BCC. The future of solar fuels: When could they become competitive? Energy Environ Sci, 2018, 11: 1653–1669

    Article  CAS  Google Scholar 

  2. Chowdhury FA, Trudeau ML, Guo H, et al. A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat Commun, 2018, 9: 1707

    Article  Google Scholar 

  3. Zhang N, Long R, Gao C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater, 2018, 61: 771–805

    Article  CAS  Google Scholar 

  4. Chen Y, Yan C, Dong J, et al. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv Funct Mater, 2021, 31: 2104099

    Article  CAS  Google Scholar 

  5. Yan C, Dong J, Chen Y, et al. Organic photocatalysts: From molecular to aggregate level. Nano Res, 2022, 15: 3835–3858

    Article  CAS  Google Scholar 

  6. Li S, Zhang J, Zhang BP, et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy, 2017, 35: 92–100

    Article  CAS  Google Scholar 

  7. Dong J, Yan C, Chen Y, et al. Organic semiconductor nanostructures: Optoelectronic properties, modification strategies, and photocatalytic applications. J Mater Sci Tech, 2022, 113: 175–198

    Article  CAS  Google Scholar 

  8. Lin B, Xia M, Xu B, et al. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chin J Catal, 2022, 43: 2141–2172

    Article  CAS  Google Scholar 

  9. Li Y, Xia Z, Yang Q, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Tech, 2022, 125: 128–144

    Article  CAS  Google Scholar 

  10. Yang Y, Niu W, Dang L, et al. Recent progress in doped g-C3N4 photocatalyst for solar water splitting: A review. Front Chem, 2022, 10: 955065

    Article  CAS  Google Scholar 

  11. Karimi-Nazarabad M, Goharshadi EK, Sajjadizadeh HS. Copper-azolate framework coated on g-C3N4 nanosheets as a core-shell heterojunction and decorated with a Ni(OH)2 cocatalyst for efficient photoelectrochemical water splitting. J Phys Chem C, 2022, 126: 8327–8336

    Article  CAS  Google Scholar 

  12. Chen D, Li X, Dai K, et al. Microwave-assisted synthesis of organic-inorganic hybrid porous g-C3N4/CdS-diethylenetriamine S-scheme heterojunctions with enhanced visible light hydrogen production. J Phys D-Appl Phys, 2022, 55: 244001

    Article  Google Scholar 

  13. Cao J, Jin X, Ma Z, et al. One-step synthesis of C quantum dots/C doped g-C3N4 photocatalysts for visible-light-driven H2 production from water splitting. J Phys D-Appl Phys, 2022, 55: 444008

    Article  Google Scholar 

  14. Yang X, Ye Y, Sun J, et al. Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: Design strategies, mechanisms, and applications. Small, 2022, 18: 2105089

    Article  CAS  Google Scholar 

  15. Sun G, Gao Q, Tang S, et al. Fabrication and enhanced photocatalytic activity of p-n heterojunction CoWO4/g-C3N4 photocatalysts for methylene blue degradation. J Electron Mater, 2022, 51: 3205–3215

    Article  CAS  Google Scholar 

  16. He B, Feng M, Chen X, et al. Fabrication of potassium ion decorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategy for enhanced photocatalytic activity towards degradation of organic pollutants. Appl Surf Sci, 2022, 575: 151695

    Article  CAS  Google Scholar 

  17. Fang X, Tang Y, Ma YJ, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci China Mater, 2023, 66: 664–671

    Article  CAS  Google Scholar 

  18. Wang Q, Fang Z, Zhang W, et al. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv Fiber Mater, 2022, 4: 342–360

    Article  CAS  Google Scholar 

  19. Qaraah FA, Mahyoub SA, Hezam A, et al. Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2022, 315: 121585

    Article  CAS  Google Scholar 

  20. Sun R, Yin H, Zhang Z, et al. Graphene-modulated PDI/g-C3N4 all-organic S-scheme heterojunction photocatalysts for efficient CO2 reduction under full-spectrum irradiation. J Phys Chem C, 2021, 125: 23830–23839

    Article  CAS  Google Scholar 

  21. Singh PP, Srivastava V. Recent advances in visible-light graphitic carbon nitride (g-C3N4) photocatalysts for chemical transformations. RSC Adv, 2022, 12: 18245–18265

    Article  CAS  Google Scholar 

  22. Lai C, Yan H, Wang D, et al. Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation. Chemosphere, 2022, 293: 133472

    Article  CAS  Google Scholar 

  23. Wang Y, Wang X, Antonietti M, et al. Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem, 2010, 3: 435–439

    Article  CAS  Google Scholar 

  24. Ji H, Chang F, Hu X, et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chem Eng J, 2013, 218: 183–190

    Article  CAS  Google Scholar 

  25. Yan SC, Li ZS, Zou ZG. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25: 10397–10401

    Article  CAS  Google Scholar 

  26. Tang Y, Zhou P, Chao Y, et al. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Sci China Mater, 2019, 62: 351–358

    Article  CAS  Google Scholar 

  27. Zhang Y, Liu J, Wu G, et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale, 2012, 4: 5300–5303

    Article  CAS  Google Scholar 

  28. Zhang G, Zhang J, Zhang M, et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem, 2012, 22: 8083–8091

    Article  CAS  Google Scholar 

  29. Zhen W, Xue C. Atomic- and molecular-level functionalizations of polymeric carbon nitride for solar fuel production. Sol RRL, 2021, 5: 2000440

    Article  CAS  Google Scholar 

  30. Hasnan NSN, Mohamed MA, Mohd Hir ZA. Surface physicochemistry modification and structural nanoarchitectures of g-C3N4 for wastewater remediation and solar fuel generation. Adv Mater Technologies, 2022, 7: 2100993

    Article  CAS  Google Scholar 

  31. Huang Y, Luo X, Du Y, et al. The role of iron-doped g-C3N4 heterogeneous catalysts in Fenton-like process investigated by experiment and theoretical simulation. Chem Eng J, 2022, 446: 137252

    Article  CAS  Google Scholar 

  32. Liu C, Huang H, Cui W, et al. Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 230: 115–124

    Article  CAS  Google Scholar 

  33. Huang H, Liu C, Ou H, et al. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Appl Surf Sci, 2019, 470: 1101–1110

    Article  CAS  Google Scholar 

  34. Chen Y, Li W, Jiang D, et al. Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity. Sci Bull, 2019, 64: 44–53

    Article  CAS  Google Scholar 

  35. Han C, Li J, Ma Z, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci China Mater, 2018, 61: 1159–1166

    Article  CAS  Google Scholar 

  36. Qin Z, Wang M, Li R, et al. Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation. Sci China Mater, 2018, 61: 861–868

    Article  CAS  Google Scholar 

  37. Tian N, Huang H, Du X, et al. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J Mater Chem A, 2019, 7: 11584–11612

    Article  CAS  Google Scholar 

  38. Tian N, Xiao K, Zhang Y, et al. Reactive sites rich porous tubular yolk-shell g-C3N4via precursor recrystallization mediated microstructure engineering for photoreduction. Appl Catal B-Environ, 2019, 253: 196–205

    Article  CAS  Google Scholar 

  39. Dong J, Zhang Y, Hussain MI, et al. g-C3N4: Properties, pore modifications, and photocatalytic applications. Nanomaterials, 2022, 12: 121–156

    Article  CAS  Google Scholar 

  40. Wang L, Zhang W, Su Y, et al. Halloysite derived 1D mesoporous tubular g-C3N4: Synergy of template effect and associated carbon for boosting photocatalytic performance toward tetracycline removal. Appl Clay Sci, 2021, 213: 106238

    Article  CAS  Google Scholar 

  41. Obregón S, Vázquez A, Ruíz-Gómez MA, et al. SBA-15 assisted preparation of mesoporous g-C3N4 for photocatalytic H2 production and Au3+ fluorescence sensing. Appl Surf Sci, 2019, 488: 205–212

    Article  Google Scholar 

  42. Li Y, Qu W, Huang L, et al. Porous-C3N4 with high ability for selective adsorption and photodegradation of dyes under visible-light. J Inorg Organomet Polym, 2017, 27: 1674–1682

    Article  CAS  Google Scholar 

  43. Feng X, Zhang J, Hu Z, et al. Pyrene-based aggregation-induced emission luminogens (AIEgen): Structure correlated with particle size distribution and mechanochromism. J Mater Chem C, 2019, 7: 6932–6940

    Article  CAS  Google Scholar 

  44. Saad A, Biswas S, Gkaniatsou E, et al. Metal-organic framework based 1D nanostructures and their superstructures: Synthesis, microstructure, and properties. Chem Mater, 2021, 33: 5825–5849

    Article  CAS  Google Scholar 

  45. Wu X, Ma H, Zhong W, et al. Porous crystalline g-C3N4: Bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl Catal B-Environ, 2020, 271: 118899

    Article  CAS  Google Scholar 

  46. Tian Z, Yang X, Chen Y, et al. Fabrication of alveolate g-C3N4 with nitrogen vacancies via cobalt introduction for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy, 2020, 45: 24792–24806

    Article  CAS  Google Scholar 

  47. Zhao HM, Di CM, Wang L, et al. Synthesis of mesoporous graphitic C3N4 using cross-linked bimodal mesoporous SBA-15 as a hard template. Microporous Mesoporous Mater, 2015, 208: 98–104

    Article  CAS  Google Scholar 

  48. Tang J, Zhang Q, Liu Y, et al. The photocatalytic redox properties of polymeric carbon nitride nanocages (PCNCs) with mesoporous hollow spherical structures prepared by a ZNO-template method. Microporous Mesoporous Mater, 2020, 292: 109639

    Article  CAS  Google Scholar 

  49. Yan J, Han X, Zheng X, et al. One-step template/chemical blowing route to synthesize flake-like porous carbon nitride photocatalyst. Mater Res Bull, 2017, 94: 423–427

    Article  CAS  Google Scholar 

  50. Chen Z, Lu S, Wu Q, et al. Salt-assisted synthesis of 3D open porous g-C3N4 decorated with cyano groups for photocatalytic hydrogen evolution. Nanoscale, 2018, 10: 3008–3013

    Article  CAS  Google Scholar 

  51. Yang F, Liu D, Li Y, et al. Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Appl Catal B-Environ, 2019, 240: 64–71

    Article  CAS  Google Scholar 

  52. Tang Q, Niu R, Gong J. Salt-templated synthesis of 3D porous foamlike C3N4 towards high-performance photodegradation of tetracyclines. New J Chem, 2020, 44: 17405–17412

    Article  CAS  Google Scholar 

  53. Sun XD, Li YY, Zhou J, et al. Facile synthesis of high photocatalytic active porous g-C3N4 with ZnCl2 template. J Colloid Interface Sci, 2015, 451: 108–116

    Article  CAS  Google Scholar 

  54. Li Y, Meng M, Ji C, et al. Soft-template synthesis of hybrid carbon and carbon nitride composites with enhanced photocatalytic activity for the degradation of methylene blue under visible light. Environ Prog Sustain Energy, 2019, 38: 13186

    Article  Google Scholar 

  55. Yan H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun, 2012, 48: 3430–3432

    Article  CAS  Google Scholar 

  56. Kadam AN, Kim H, Lee SW. Low-temperature in situ fabrication of porous S-doped g-C3N4 nanosheets using gaseous-bubble template for enhanced visible-light photocatalysis. Ceramics Int, 2020, 46: 28481–28489

    Article  CAS  Google Scholar 

  57. Zhao X, Zhang Y, Li F, et al. Salt-air template synthesis of Na and O doped porous graphitic carbon nitride nanorods with exceptional photocatalytic H2 evolution activity. Carbon, 2021, 179: 42–52

    Article  CAS  Google Scholar 

  58. Qi K, Cui N, Zhang M, et al. Ionic liquid-assisted synthesis of porous boron-doped graphitic carbon nitride for photocatalytic hydrogen production. Chemosphere, 2021, 272: 129953

    Article  CAS  Google Scholar 

  59. Hao Q, Song Y, Ji H, et al. Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution. Appl Surf Sci, 2018, 459: 845–852

    Article  CAS  Google Scholar 

  60. Dong X, Cheng F. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A, 2015, 3: 23642–23652

    Article  CAS  Google Scholar 

  61. Tang G, Zhang F, Huo P, et al. Constructing novel visible-light-driven ternary photocatalyst of AgBr nanoparticles decorated 2D/2D heterojunction of g-C3N4/BiOBr nanosheets with remarkably enhanced photocatalytic activity for water-treatment. Ceramics Int, 2019, 45: 19197–19205

    Article  CAS  Google Scholar 

  62. Yan Q, Zhao C, Zhang L, et al. Facile two-step synthesis of porous carbon nitride with enhanced photocatalytic activity using a soft template. ACS Sustain Chem Eng, 2019, 7: 3866–3874

    Article  CAS  Google Scholar 

  63. Ma J, Wang C, He H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl Catal B-Environ, 2016, 184: 28–34

    Article  CAS  Google Scholar 

  64. Li J, Shen B, Hong Z, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun, 2012, 48: 12017–12019

    Article  CAS  Google Scholar 

  65. Jiang J, Ou-yang L, Zhu L, et al. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon, 2014, 80: 213–221

    Article  CAS  Google Scholar 

  66. Ming L, Yue H, Xu L, et al. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J Mater Chem A, 2014, 2: 19145–19149

    Article  CAS  Google Scholar 

  67. Dong F, Li Y, Wang Z, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl Surf Sci, 2015, 358: 393–403

    Article  CAS  Google Scholar 

  68. Mo Z, Zhu X, Jiang Z, et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2019, 256: 117854

    Article  CAS  Google Scholar 

  69. Liu H, Cheng D, Chen F, et al. 2D porous N-deficient g-C3N4 nanosheet decorated with CdS nanoparticles for enhanced visible-light-driven photocatalysis. ACS Sustain Chem Eng, 2020, 8: 16897–16904

    Article  CAS  Google Scholar 

  70. Mo Z, Xu H, Chen Z, et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl Catal B-Environ, 2018, 225: 154–161

    Article  CAS  Google Scholar 

  71. Niu P, Qiao M, Li Y, et al. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy, 2018, 44: 73–81

    Article  CAS  Google Scholar 

  72. Feng D, Cheng Y, He J, et al. Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process. Carbon, 2017, 125: 454–463

    Article  CAS  Google Scholar 

  73. Li H, Li F, Wang Z, et al. Fabrication of carbon bridged g-C3N4 through supramolecular self-assembly for enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 229: 114–120

    Article  CAS  Google Scholar 

  74. Liu J, Fang W, Wei Z, et al. Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach. Appl Catal B-Environ, 2018, 238: 465–470

    Article  CAS  Google Scholar 

  75. Tian Y, Huang GF, Tang LJ, et al. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater Lett, 2012, 83: 104–107

    Article  CAS  Google Scholar 

  76. Jorge AB, Martin DJ, Dhanoa MTS, et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J Phys Chem C, 2013, 117: 7178–7185

    Article  CAS  Google Scholar 

  77. Meng J, Wang X, Liu Y, et al. Acid-induced molecule self-assembly synthesis of Z-scheme WO3/g-C3N4 heterojunctions for robust photocatalysis against phenolic pollutants. Chem Eng J, 2021, 403: 126354

    Article  CAS  Google Scholar 

  78. Kerchich S, Boudjemaa A, Chebout R, et al. High performance of δ-Fe2O3 novel photo-catalyst supported on LDH structure. J Photo Chem PhotoBiol A-Chem, 2021, 406: 113001

    Article  CAS  Google Scholar 

  79. Li X, Chen D, Li N, et al. Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light. J Hazard Mater, 2020, 400: 123243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2021YFB3802200) and the Scientific and Technological Innovation Foundation of Shunde Graduate School, University of Science and Technology Beijing (BK19AE027 and BK20BE022).

Author information

Authors and Affiliations

Authors

Contributions

Gong Z performed the experiments with support from Dong J; Zhou W draw part of illustrations. Chen Y conceived the work and wrote the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yingzhi Chen  (陈颖芝), Guodong Hao  (郝国栋) or Lu-Ning Wang  (王鲁宁).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yingzhi Chen is an associate professor at the School of Materials Science and Engineering, University of Science and Technology Beijing. She received her PhD degree in chemistry from the Institute of Technical Institute of Physics & Chemistry, Chinese Academy of Sciences in 2012 after she got her MS degree in chemistry from Beijing Normal University. Her current research focuses on the design and synthesis of novel organic semiconductor nanocrystals and their applications in photocatalysis and biosensing.

Lu-Ning Wang is a professor at the School of Materials Science and Engineering, University of Science and Technology Beijing. He received his BE and MS degrees in materials science and engineering from the University of Science and Technology Beijing in 2002 and Tsinghua University in 2005, respectively. He received another ME and PhD degrees in medical science and biomedical engineering from the University of Alberta in 2007 and 2011, respectively. His research interests include optoelectronic materials and biodgradable materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Gong, Z., Chen, Y. et al. Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst. Sci. China Mater. 66, 3176–3188 (2023). https://doi.org/10.1007/s40843-022-2463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2463-8

Keywords

Navigation