Skip to main content
Log in

Photoelectric and thermochromic properties of CsPbIBr2-based all inorganic semitransparent devices

基于CsPbIBr2的全无机半透明器件的光伏性能与热 致变色性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The photovoltaic thermochromic smart window, which combines perovskite with thermochromic and photovoltaic properties, can not only control the solar transmittance at different temperatures, but also convert the absorbed light energy into usable electric energy. Herein, we designed a fluoride-doped tin oxide (FTO)/SnO2/CsPbIBr2/NiOx/indium tin oxide (ITO) semitransparent solar cell structure by using the optimized post-annealing process and obtained an average visible transmittance (AVT) of 33.2% and a power conversion efficiency of 3.89% under the optimal conditions. Meanwhile, based on the thermochromic properties of CsPbIBr2, it was found that the AVT of the device improved from 33.2% to 73.5% when CsPbIBr2 converted from the colored high-temperature phase to the transparent low-temperature phase. Besides, the transition from high-temperature phase to low-temperature phase is humidity-dominated. When the relative humidity rises from 50% to 90%, the phase transition time of perovskite decreases substantially from 1005 to 17 min. However, the excessively fast phase transition caused by high humidity will destroy the thin film morphology and crystal structure of perovskite, causing irreversible damage to CsPbIBr2 perovskite. This work is promising for the application of semitransparent photovoltaic and thermochromic smart window, which represents an attractive prospect in further reducing the energy consumption of buildings and automobiles.

摘要

光伏热致变色智能窗采用钙钛矿材料并结合其热致变色和光伏 特性, 既可调控不同温度下的太阳光透过率, 又可将吸收的光能转化为 可用的电能. 在此, 我们利用经过优化的后退火工艺设计了一个结构为 氟掺杂氧化锡(FTO)/SnO2/CsPbIBr2/NiOx/铟锡氧化物(ITO)的半透明 太阳能电池, 在最佳条件下其平均可见光透过率为33.2%, 光电转化效 率为3.89%. 同时, 基于CsPbIBr2的热致变色特性, 我们发现当其由高温 着色相转变为低温透明相时, 器件的平均可见透过率可从33.2%提高至 73.5%. ´此外, 高温相向低温相的转变受湿度主导. 当相对湿度从50%上升至90%时, 钙钛矿相变时间从1005分钟大幅度下降至17分钟. 然而, 过 高的湿度导致的过快相变会破坏钙钛矿的薄膜形貌和晶体结构, 这将 对CsPbIBr2钙钛矿造成不可逆损伤. 这项工作为半透明光伏和热致变 色智能窗的应用提供了重要参考, 并可预见这一领域将进一步助力降 低建筑和汽车能耗.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batmunkh M, Zhong YL, Zhao H. Recent advances in perovskite-based building-integrated photovoltaics. Adv Mater, 2020, 32: 2000631

    Article  CAS  Google Scholar 

  2. Baetens R, Jelle BP, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol Energy Mater Sol Cells, 2010, 94: 87–105

    Article  CAS  Google Scholar 

  3. Mirzaei A, Kim JH, Kim HW, et al. Gasochromic WO3 nanostructures for the detection of hydrogen gas: An overview. Appl Sci, 2019, 9: 1775

    Article  CAS  Google Scholar 

  4. Zhang J, Zou Q, Tian H. Photochromic materials: More than meets the eye. Adv Mater, 2013, 25: 378–399

    Article  CAS  Google Scholar 

  5. Ke Y, Zhou C, Zhou Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv Funct Mater, 2018, 28: 1800113

    Article  Google Scholar 

  6. Zhang Y, Tso CY, Iñigo JS, et al. Perovskite thermochromic smart window: Advanced optical properties and low transition temperature. Appl Energy, 2019, 254: 113690

    Article  CAS  Google Scholar 

  7. Granqvist CG. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564: 1–38

    Article  CAS  Google Scholar 

  8. Ke Y, Chen J, Lin G, et al. Smart windows: Electro-, thermo-, mechano, photochromics, and beyond. Adv Energy Mater, 2019, 9: 1902066

    Article  CAS  Google Scholar 

  9. Lampert CM. Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells, 2003, 76: 489–499

    Article  CAS  Google Scholar 

  10. Cannavale A, Eperon GE, Cossari P, et al. Perovskite photo-voltachromic cells for building integration. Energy Environ Sci, 2015, 8: 1578–1584

    Article  CAS  Google Scholar 

  11. Bechinger C, Ferrere S, Zaban A, et al. Photoelectrochromic windows and displays. Nature, 1996, 383: 608–610

    Article  CAS  Google Scholar 

  12. Chen CC, Dou L, Zhu R, et al. Visibly transparent polymer solar cells produced by solution processing. ACS Nano, 2012, 6: 7185–7190

    Article  CAS  Google Scholar 

  13. Shi B, Duan L, Zhao Y, et al. Semitransparent perovskite solar cells: From materials and devices to applications. Adv Mater, 2020, 32: 1806474

    Article  CAS  Google Scholar 

  14. Forberich K, Guo F, Bronnbauer C, et al. Efficiency limits and color of semitransparent organic solar cells for application in building-integrated photovoltaics. Energy Tech, 2015, 3: 1051–1058

    Article  CAS  Google Scholar 

  15. Chen KS, Salinas JF, Yip HL, et al. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ Sci, 2012, 5: 9551

    Article  CAS  Google Scholar 

  16. Jung JW, Chueh CC, Jen AKY. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv Energy Mater, 2015, 5: 1500486

    Article  Google Scholar 

  17. Treml BE, Hanrath T. Quantitative framework for evaluating semitransparent photovoltaic windows. ACS Energy Lett, 2016, 1: 391–394

    Article  CAS  Google Scholar 

  18. Zhang W, Eperon GE, Snaith HJ. Metal halide perovskites for energy applications. Nat Energy, 2016, 1: 16048

    Article  CAS  Google Scholar 

  19. Goldschmidt JC. From window to solar cell and back. Nat Mater, 2018, 17: 218–219

    Article  CAS  Google Scholar 

  20. Kwon HC, Ma S, Yun SC, et al. A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications. J Mater Chem A, 2020, 8: 1457–1468

    Article  CAS  Google Scholar 

  21. Chen C, Han TH, Tan S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett, 2020, 20: 4673–4680

    Article  CAS  Google Scholar 

  22. Eperon GE, Burlakov VM, Goriely A, et al. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano, 2014, 8: 591–598

    Article  CAS  Google Scholar 

  23. Wheeler LM, Moore DT, Ihly R, et al. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat Commun, 2017, 8: 1722

    Article  Google Scholar 

  24. Yu Y, Wang C, Grice CR, et al. Improving the performance of for-mamidinium and cesium lead triiodide perovskite solar cells using lead thiocyanate additives. ChemSusChem, 2016, 9: 3288–3297

    Article  CAS  Google Scholar 

  25. Juarez-Perez EJ, Ono LK, Maeda M, et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J Mater Chem A, 2018, 6: 9604–9612

    Article  CAS  Google Scholar 

  26. Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photo-voltaics. Science, 2016, 354: 92–95

    Article  CAS  Google Scholar 

  27. Eperon GE, Paterno GM, Sutton RJ, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3: 19688–19695

    Article  CAS  Google Scholar 

  28. Tavakoli MM, Nasilowski M, Zhao J, et al. Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Methods, 2019, 3: 1900449

    Article  CAS  Google Scholar 

  29. Wang M, Cao F, Wang M, et al. Intermediate-adduct-assisted growth of stable CsPbI2Br inorganic perovskite films for high-efficiency semi-transparent solar cells. Adv Mater, 2021, 33: 2006745

    Article  CAS  Google Scholar 

  30. Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30: 1800855

    Article  Google Scholar 

  31. Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17: 261–267

    Article  CAS  Google Scholar 

  32. Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598: 444–450

    Article  CAS  Google Scholar 

  33. Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2 RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377: 531–534

    Article  CAS  Google Scholar 

  34. Park NG, Zhu K. Scalable fabrication and coating methods for per-ovskite solar cells and solar modules. Nat Rev Mater, 2020, 5: 333–350

    Article  CAS  Google Scholar 

  35. Deng Y, Xu S, Chen S, et al. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat Energy, 2021, 6: 633–641

    Article  CAS  Google Scholar 

  36. Sheng G, Wang J, Xiao X, et al. Optimizing the NiOx/Au interface via postannealing of the all-inorganic CsPbIBr2 perovskite solar cells for high efficiency. Adv Eng Mater, 2022, 24: 2100962

    Article  CAS  Google Scholar 

  37. Lunt RR. Theoretical limits for visibly transparent photovoltaics. Appl Phys Lett, 2012, 101: 043902

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R&D program of Guangzhou (202007020004), the Natural Science Foundation of Guangdong Province (2018A0303130146), the Project of Science and Technology of Guangzhou (201904010171), and the Open Fund of State Key Laboratory of Luminescent Materials and Devices (2023-skllmd-05).

Author information

Authors and Affiliations

Authors

Contributions

Xiao X supervised the project. Xiao X, Ge R and Zhao Y conceived the ideas for the project and designed the experiments. Zhao Y and Ge R performed the film and device fabrication. Jiang C, Zheng J, Chen L, and Zheng Y characterized the films and devices. Ge R, Zhao Y, Jiang C, Zheng J, Chen L, and Zheng Y optimized the photovoltaic performance of devices together. Ge R and Zhao Y performed the analysis and wrote the manuscript. Xiao X and Xu G revised the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Xiudi Xiao  (肖秀娣).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Rui Ge is currently pursuing her Master’s degree under the supervision of Prof. Xiudi Xiao at the University of Science and Technology of China. Her current research interests focus on perovskite solar cells.

Xiudi Xiao is a professor at the University of Science and Technology of China. Her research interest includes stimuli-responsive photo-electronic functional systems, and color-changing devices based on thermochromic or electrochromic materials.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, R., Zhao, Y., Jiang, C. et al. Photoelectric and thermochromic properties of CsPbIBr2-based all inorganic semitransparent devices. Sci. China Mater. 66, 3261–3270 (2023). https://doi.org/10.1007/s40843-022-2450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2450-8

Keywords

Navigation