Skip to main content
Log in

High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges

高熵合金在水电解中的研究进展、基础与挑战

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As a clean energy carrier, hydrogen energy has become part of the global clean energy strategy and one of the necessary routes to achieve global carbon neutrality. Driven by renewable electricity, water electrolysis promises to be an ideal long-term hydrogen production method that can realize net zero carbon emissions. Compared with conventional alloys, high-entropy alloys (HEAs) have much more catalytic active sites due to their unique structural features including occupation disorder and lattice ordering. They have various promising applications in the field of hydrolysis catalysts. Herein, in this review, the mechanisms of electrolysis of water, catalytic principles of HEAs in hydrolysis processes and latest research progress of HEAs as water electrolysis catalysts are summarized. We also provide perspectives on the difficulties and potential linked to novel HEA design approaches in this attractive sector, with a focus on the connection between both the surface morphology and the catalysis activity. The compositions and possible applications of HEAs in water electrolysis and other emerging fields are outlined.

摘要

氢能作为一种清洁能源, 已成为全球能源战略的重要组成部分,也是实现全球“碳中和”的必要途径之一. 在可再生电力的驱动下, 水电解法有望成为实现“零碳”排放的一种理想的长期制氢方法. 与传统合金相比, 高熵合金由于其独特的结构特征, 包括占位无序和晶格有序,可提供更多的催化活性位点. 它们在水解催化剂领域具有广泛的应用前景. 本文综述了电解水的机理、水解过程中高熵合金的催化原理, 以及高熵合金作为电解水催化剂的最新研究进展. 总结了新型高熵合金设计方面存在的难点及其应用潜力, 重点讨论了高熵合金在水解催化过程中表面形态和催化活性之间的联系. 最后归纳了高熵合金的组成调控及其在水电解等新兴领域的可能应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li B, Li Z, Wu X, et al. Interface functionalization in inverted perovskite solar cells: From material perspective. Nano Res Energy, 2022, 1: e9120011

    Article  Google Scholar 

  2. Zeng J, Bi L, Cheng Y, et al. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res Energy, 2022, 1: e9120004

    Article  Google Scholar 

  3. Liang G, Li X, Wang Y, et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Res Energy, 2022, 1: e9120002

    Article  Google Scholar 

  4. Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy, 2009, 34: 4569–4574

    Article  CAS  Google Scholar 

  5. Barbir F. Transition to renewable energy systems with hydrogen as an energy carrier. Energy, 2009, 34: 308–312

    Article  CAS  Google Scholar 

  6. Ahmed A, Al-Amin AQ, Ambrose AF, et al. Hydrogen fuel and transport system: A sustainable and environmental future. Int J Hydrogen Energy, 2016, 41: 1369–1380

    Article  CAS  Google Scholar 

  7. Peng X, Mi Y, Liu X, et al. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J Mater Chem A, 2022, 10: 6134–6145

    Article  CAS  Google Scholar 

  8. Zhang H, Qiu Y, Zhang S, et al. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics, 2022, 28: 3927–3934

    Article  CAS  Google Scholar 

  9. Hou J, Peng X, Sun J, et al. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg Chem Front, 2022, 9: 3047–3058

    Article  CAS  Google Scholar 

  10. Milazzo MF, Spina F, Primerano P, et al. Soy biodiesel pathways: Global prospects. Renew Sustain Energy Rev, 2013, 26: 579–624

    Article  Google Scholar 

  11. Achten WMJ, Verchot L, Franken YJ, et al. Jatropha bio-diesel production and use. Biomass Bioenergy, 2008, 32: 1063–1084

    Article  CAS  Google Scholar 

  12. Balat M, Balat M. Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrogen Energy, 2009, 34: 3589–3603

    Article  CAS  Google Scholar 

  13. Choi P. A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ion, 2004, 175: 535–539

    Article  CAS  Google Scholar 

  14. Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proc IEEE, 2012, 100: 410–426

    Article  CAS  Google Scholar 

  15. Holladay JD, Hu J, King DL, et al. An overview of hydrogen production technologies. Catal Today, 2009, 139: 244–260

    Article  CAS  Google Scholar 

  16. Cook TR, Dogutan DK, Reece SY, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev, 2010, 110: 6474–6502

    Article  CAS  Google Scholar 

  17. Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc, 2013, 135: 13521–13530

    Article  CAS  Google Scholar 

  18. Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A, 2015, 3: 14942–14962

    Article  CAS  Google Scholar 

  19. Su P, Pei W, Wang X, et al. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew Chem Int Ed, 2021, 60: 16044–16050

    Article  CAS  Google Scholar 

  20. Hammes-Schiffer S. Theory of proton-coupled electron transfer in energy conversion processes. Acc Chem Res, 2009, 42: 1881–1889

    Article  CAS  Google Scholar 

  21. Chianelli RR, Berhault G, Raybaud P, et al. Periodic trends in hydrodesulfurization: In support of the Sabatier principle. Appl Catal A-Gen, 2002, 227: 83–96

    Article  CAS  Google Scholar 

  22. Hunter BM, Gray HB, Müller AM. Earth-abundant heterogeneous water oxidation catalysts. Chem Rev, 2016, 116: 14120–14136

    Article  CAS  Google Scholar 

  23. Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473

    Article  CAS  Google Scholar 

  24. Shao M, Zhang R, Li Z, et al. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem Commun, 2015, 51: 15880–15893

    Article  CAS  Google Scholar 

  25. Stevens MB, Trang CDM, Enman LJ, et al. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J Am Chem Soc, 2017, 139: 11361–11364

    Article  CAS  Google Scholar 

  26. Kim J, Shih PC, Tsao KC, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J Am Chem Soc, 2017, 139: 12076–12083

    Article  CAS  Google Scholar 

  27. Gao J, Tao H, Liu B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv Mater, 2021, 33: 2003786

    Article  CAS  Google Scholar 

  28. Cheng F, Li Z, Wang L, et al. In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. Mater Horiz, 2021, 8: 556–564

    Article  CAS  Google Scholar 

  29. Wang K, Wang Y, Yang B, et al. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ Sci, 2022, 15: 2356–2365

    Article  CAS  Google Scholar 

  30. Dai Q, Wang L, Wang K, et al. Accelerated water dissociation kinetics by electron-enriched cobalt sites for efficient alkaline hydrogen evolution. Adv Funct Mater, 2022, 32: 2109556

    Article  CAS  Google Scholar 

  31. Cheng F, Peng X, Hu L, et al. Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat Commun, 2022, 13: 6486

    Article  CAS  Google Scholar 

  32. Lyu S, Guo C, Wang J, et al. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat Commun, 2022, 13: 6171

    Article  CAS  Google Scholar 

  33. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater, 2019, 4: 515–534

    Article  CAS  Google Scholar 

  34. Li W, Fan H, Tang J, et al. Effects of alloying on deformation twinning in high entropy alloys. Mater Sci Eng-A, 2019, 763: 138143

    Article  CAS  Google Scholar 

  35. Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun, 2022, 13: 2662

    Article  CAS  Google Scholar 

  36. Guo J, Tang C, Rothwell G, et al. Welding of high entropy alloys—A review. Entropy, 2019, 21: 431

    Article  CAS  Google Scholar 

  37. Kuang M, Zhang J, Liu D, et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv Energy Mater, 2020, 10: 2002215

    Article  CAS  Google Scholar 

  38. Constantin G, Balan E, Voiculescu I, et al. Cutting behavior of Al0.6CoCrFeNi high entropy alloy. Materials, 2020, 13: 4181

    Article  CAS  Google Scholar 

  39. Löffler T, Ludwig A, Rossmeisl J, et al. What makes high-entropy alloys exceptional electrocatalysts?. Angew Chem Int Ed, 2021, 60: 26894–26903

    Article  Google Scholar 

  40. Sharma L, Katiyar NK, Parui A, et al. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res, 2022, 15: 4799–4806

    Article  CAS  Google Scholar 

  41. Zhao X, Xue Z, Chen W, et al. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem, 2020, 13: 2038–2042

    Article  CAS  Google Scholar 

  42. Cai ZX, Goou H, Ito Y, et al. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem Sci, 2021, 12: 11306–11315

    Article  CAS  Google Scholar 

  43. Zhang H, Luo Y, Chu PK, et al. Recent advances in non-noble metalbased bifunctional electrocatalysts for overall seawater splitting. J Alloys Compd, 2022, 922: 166113

    Article  CAS  Google Scholar 

  44. Yang M, Liu Y, Sun J, et al. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci China Mater, 2022, 65: 1176–1186

    Article  CAS  Google Scholar 

  45. Peng X, Bao H, Sun J, et al. Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale, 2021, 13: 7134–7139

    Article  CAS  Google Scholar 

  46. Liu X, Chang Z, Luo L, et al. Hierarchical ZnxCo3−xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem Mater, 2014, 26: 1889–1895

    Article  CAS  Google Scholar 

  47. Qi G, Liu X, Li C, et al. The origin of superhydrophobicity for intrinsically hydrophilic metal oxides: A preferential O2 adsorption dominated by oxygen vacancies. Angew Chem Int Ed, 2019, 58: 17406–17411

    Article  CAS  Google Scholar 

  48. Zhang L, Liang J, Yue L, et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res Energy, 2022, 1: e9120028

    Article  Google Scholar 

  49. Liu S, Jin M, Sun J, et al. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem Eng J, 2022, 437: 135294

    Article  CAS  Google Scholar 

  50. Wang X, Liu S, Zhang H, et al. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem Commun, 2022, 58: 7654–7657

    Article  CAS  Google Scholar 

  51. Yang M, Sun J, Qin Y, et al. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci China Mater, 2022, 65: 536–542

    Article  CAS  Google Scholar 

  52. Qi D, Lv F, Wei T, et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res Energy, 2022, 1: e9120022

    Article  Google Scholar 

  53. Meng G, Jin M, Wei T, et al. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res, 2022, 15: 8890–8896

    Article  CAS  Google Scholar 

  54. Meng G, Wei T, Liu W, et al. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem Commun, 2022, 58: 8097–8100

    Article  CAS  Google Scholar 

  55. Xu J, Lai S, Qi D, et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res, 2021, 14: 1374–1381

    Article  CAS  Google Scholar 

  56. Chen Y, Li L, Liu X, et al. Synthesis of a synergistic catalyst for oxygen reduction and a Zn-air battery by the in situ coupling of heminderived Fe3O4/N-doped graphitic carbon. Mater Res Express, 2019, 6: 065019

    Article  CAS  Google Scholar 

  57. Qi D, Liu Y, Hu M, et al. Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-air battery. Small, 2020, 16: 2004855

    Article  CAS  Google Scholar 

  58. Zhang L, Cai W, Bao N. Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy)hydroxide electrocatalyst for the oxygen evolution reaction. Adv Mater, 2021, 33: 2100745

    Article  CAS  Google Scholar 

  59. Zhang Y, Wang D, Wang S. High-entropy alloys for electrocatalysis: Design, characterization, and applications. Small, 2022, 18: 2104339

    Article  CAS  Google Scholar 

  60. Batchelor TAA, Pedersen JK, Winther SH, et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule, 2019, 3: 834–845

    Article  CAS  Google Scholar 

  61. Wang X, Guo W, Fu Y. High-entropy alloys: Emerging materials for advanced functional applications. J Mater Chem A, 2021, 9: 663–701

    Article  CAS  Google Scholar 

  62. Qi D, Liu S, Chen H, et al. Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Mater Chem Front, 2021, 5: 3125–3131

    Article  CAS  Google Scholar 

  63. Lv L, Zhang L, He X, et al. Energy-efficient hydrogen production via electrochemical methanol oxidation using a bifunctional nickel nanoparticle-embedded carbon prism-like microrod electrode. Acta Physico Chim Sin, 2020, 0: 2007079–0

    Article  Google Scholar 

  64. Qin Y, Wang B, Qiu Y, et al. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chem Commun, 2021, 57: 2752–2755

    Article  CAS  Google Scholar 

  65. Zhang S, Sun L, Fan Q, et al. Challenges and prospects of lithium-CO2 batteries. Nano Res Energy, 2022, 1: e9120001

    Article  Google Scholar 

  66. Yang M, Liu S, Sun J, et al. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl Catal B-Environ, 2022, 307: 121145

    Article  CAS  Google Scholar 

  67. Zhang H, Wei T, Qiu Y, et al. Recent progress in metal phosphorous chalcogenides: Potential high-performance electrocatalysts. Small, 2023, 2207249

  68. Liu W, Feng J, Wei T, et al. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res, 2023, 16: 2325–2346

    Article  CAS  Google Scholar 

  69. Han L, Ren Z, Ou P, et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew Chem Int Ed, 2021, 60: 345–350

    Article  CAS  Google Scholar 

  70. Huo WY, Wang SQ, Zhu WH, et al. Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten, 2021, 3: 161–180

    Article  Google Scholar 

  71. Wang Y, Zheng X, Wang D. Design concept for electrocatalysts. Nano Res, 2022, 15: 1730–1752

    Article  CAS  Google Scholar 

  72. Zhang Q, Zhang S, Luo Y, et al. Preparation of high entropy alloys and application to catalytical water electrolysis. APL Mater, 2022, 10: 070701

    Article  CAS  Google Scholar 

  73. Wang J, Li J, Wang Q, et al. The incredible excess entropy in high entropy alloys. Scripta Mater, 2019, 168: 19–22

    Article  CAS  Google Scholar 

  74. Qiu Y, Thomas S, Gibson MA, et al. Corrosion of high entropy alloys. npj Mater Degrad, 2017, 1: 15

    Article  Google Scholar 

  75. Luan HW, Shao Y, Li JF, et al. Phase stabilities of high entropy alloys. Scripta Mater, 2020, 179: 40–44

    Article  CAS  Google Scholar 

  76. Dou D, Li XC, Zheng ZY, et al. Coatings of FeAlCoCuNiV high entropy alloy. Surf Eng, 2016, 32: 766–770

    Article  CAS  Google Scholar 

  77. Fultz B. Vibrational thermodynamics of materials. Prog Mater Sci, 2010, 55: 247–352

    Article  CAS  Google Scholar 

  78. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  CAS  Google Scholar 

  79. Lin Z, Zhi C, Qu L. Nano Research Energy: An interdisciplinary journal centered on nanomaterials and nanotechnology for energy. Nano Res Energy, 2022, 1: e9120005

    Article  Google Scholar 

  80. Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun, 2014, 4: 57–62

    Article  CAS  Google Scholar 

  81. Yong Z, Zuo T, Zhi T, et al. Microstructures and propties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1–93

    Article  Google Scholar 

  82. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61: 2–22

    Article  CAS  Google Scholar 

  83. Huang W, Zhou D, Lee J, et al. Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light. Nanotechnology, 2021, 32: 505722

    Article  CAS  Google Scholar 

  84. Li C, Li JC, Zhao M, et al. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J Alloys Compd, 2009, 475: 752–757

    Article  CAS  Google Scholar 

  85. Qin R, Wang P, Lin C, et al. Transition metal nitrides: Activity origin, synthesis and electrocatalytic applications. Acta Physico Chim Sin, 2020, 0: 2009099–0

    Article  Google Scholar 

  86. Tomboc GM, Kwon T, Joo J, et al. High entropy alloy electrocatalysts: A critical assessment of fabrication and performance. J Mater Chem A, 2020, 8: 14844–14862

    Article  CAS  Google Scholar 

  87. Lv ZY, Liu XJ, Jia B, et al. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci Rep, 2016, 6: 34213

    Article  CAS  Google Scholar 

  88. Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nat Commun, 2017, 8: 15687

    Article  CAS  Google Scholar 

  89. Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550

    Article  CAS  Google Scholar 

  90. Liu H, Fu J, Li H, et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl Catal B-Environ, 2022, 306: 121029

    Article  CAS  Google Scholar 

  91. Xie P, Yao Y, Huang Z, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun, 2019, 10: 4011

    Article  Google Scholar 

  92. Zhang F, Xie K. Porous iron-and cobalt-based single crystals with enhanced electrocatalysis performance. Chin J Struct Chem, 2021, 40: 61–69

    Google Scholar 

  93. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

    Article  CAS  Google Scholar 

  94. Yao Y, Liu Z, Xie P, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci Adv, 2020, 6: eaaz0510

    Article  CAS  Google Scholar 

  95. Yeh JW, Chang SY, Hong YD, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements. Mater Chem Phys, 2007, 103: 41–46

    Article  CAS  Google Scholar 

  96. Huang K, Zhang B, Wu J, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J Mater Chem A, 2020, 8: 11938–11947

    Article  CAS  Google Scholar 

  97. Ye YF, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Mater Today, 2016, 19: 349–362

    Article  CAS  Google Scholar 

  98. Zheng H, Luo G, Zhang A, et al. The synthesis and catalytic applications of nanosized high-entropy alloys. ChemCatChem, 2021, 13: 806–817

    Article  CAS  Google Scholar 

  99. Fu J, Cao C, Tong W, et al. Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy. Trans Nonferrous Met Soc China, 2018, 28: 931–938

    Article  CAS  Google Scholar 

  100. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  101. Zhang Y, Zhou Y, Lin J, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  CAS  Google Scholar 

  102. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater, 2013, 61: 4887–4897

    Article  CAS  Google Scholar 

  103. Tsai CW, Chen YL, Tsai MH, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd, 2009, 486: 427–435

    Article  CAS  Google Scholar 

  104. Senkov ON, Semiatin SL. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloys Compd, 2015, 649: 1110–1123

    Article  CAS  Google Scholar 

  105. Pei Z. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res Energy, 2022, 1: e9120023

    Article  Google Scholar 

  106. Tsai MH, Yeh JW. High-entropy alloys: A critical review Mater Res Lett, 2014, 2: 107–123

    Article  Google Scholar 

  107. Guo S, Ng C, Liu CT. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd, 2013, 557: 77–81

    Article  CAS  Google Scholar 

  108. Wang S, Xin H. Predicting catalytic activity of high-entropy alloys for electrocatalysis. Chem, 2019, 5: 502–504

    Article  CAS  Google Scholar 

  109. Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat Commun, 2020, 11: 5437

    Article  CAS  Google Scholar 

  110. Zhang D, Shi Y, Zhao H, et al. The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J Mater Chem A, 2021, 9: 889–893

    Article  Google Scholar 

  111. Xiang R, Peng L, Wei Z. Tuning interfacial structures for better catalysis of water electrolysis. Chem Eur J, 2019, 25: 9799–9815

    Article  CAS  Google Scholar 

  112. Alayoglu S, Eichhorn B. Rh-Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc, 2008, 130: 17479–17486

    Article  CAS  Google Scholar 

  113. Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv Mater, 2019, 31: 1808066

    Article  Google Scholar 

  114. Li L, Wang P, Shao Q, et al. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev, 2020, 49: 3072–3106

    Article  CAS  Google Scholar 

  115. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355

  116. Li R, Liu X, Wu R, et al. Flexible honeycombed nanoporous/glassy hybrid for efficient electrocatalytic hydrogen generation. Adv Mater, 2019, 31: 1904989

    Article  CAS  Google Scholar 

  117. Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44: 2060–2086

    Article  CAS  Google Scholar 

  118. Li H, Lai J, Li Z, et al. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater, 2021, 31: 2106715

    Article  CAS  Google Scholar 

  119. Quaino P, Juarez F, Santos E, et al. Volcano plots in hydrogen electrocatalysis-uses and abuses. Beilstein J Nanotechnol, 2014, 5: 846–854

    Article  Google Scholar 

  120. Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev, 2020, 120: 851–918

    Article  CAS  Google Scholar 

  121. Xu H, Shang H, Wang C, et al. Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater, 2020, 30: 2000793

    Article  CAS  Google Scholar 

  122. Durst J, Siebel A, Simon C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci, 2014, 7: 2255–2260

    Article  CAS  Google Scholar 

  123. Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334: 1256–1260

    Article  CAS  Google Scholar 

  124. Wang X, Zheng Y, Sheng W, et al. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today, 2020, 36: 125–138

    Article  CAS  Google Scholar 

  125. Subbaraman R, Tripkovic D, Chang KC, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)-oxide catalysts. Nat Mater, 2012, 11: 550–557

    Article  CAS  Google Scholar 

  126. Mahmood J, Li F, Jung SM, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotech, 2017, 12: 441–446

    Article  CAS  Google Scholar 

  127. Lu Q, Hutchings GS, Yu W, et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun, 2015, 6: 6567

    Article  CAS  Google Scholar 

  128. Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359: 1489–1494

    Article  CAS  Google Scholar 

  129. Huang J, Wang P, Li P, et al. Regulating electrolytic Fe0.5CoNiCuZn high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. J Mater Sci Tech, 2021, 93: 110–118

    Article  CAS  Google Scholar 

  130. Yang X, Liping S, Qiang L, et al. Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr0.2Mn0.2Fe0.2Ni0.2-Zn0.2)3O4 for the oxygen evolution reaction. J Mater Chem A, 2022, 10: 17633–17641

    Article  CAS  Google Scholar 

  131. Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater, 2016, 28: 9266–9291

    Article  CAS  Google Scholar 

  132. Suen NT, Hung SF, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem Soc Rev, 2017, 46: 337–365

    Article  CAS  Google Scholar 

  133. Yao Q, Huang B, Zhang N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew Chem Int Ed, 2019, 58: 13983–13988

    Article  CAS  Google Scholar 

  134. Yang J, Shao Q, Huang B, et al. pH-universal water splitting catalyst: Ru-Ni nanosheet assemblies. iScience, 2019, 11: 492–504

    Article  CAS  Google Scholar 

  135. Song J, Wei C, Huang ZF, et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev, 2020, 49: 2196–2214

    Article  CAS  Google Scholar 

  136. Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352: 333–337

    Article  CAS  Google Scholar 

  137. Halck NB, Petrykin V, Krtil P, et al. Beyond the volcano limitations in electrocatalysis-oxygen evolution reaction. Phys Chem Chem Phys, 2014, 16: 13682–13688

    Article  CAS  Google Scholar 

  138. Wang B, Zhao K, Yu Z, et al. In situ structural evolution of the multisite alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ Sci, 2020, 13: 2200–2208

    Article  CAS  Google Scholar 

  139. Zhang L, Han L, Liu H, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed, 2017, 56: 13694–13698

    Article  CAS  Google Scholar 

  140. Xu J, Zhang C, Liu H, et al. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy, 2020, 70: 104529

    Article  CAS  Google Scholar 

  141. Liu H, Peng X, Liu X. Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem, 2018, 5: 2963–2974

    Article  CAS  Google Scholar 

  142. Tang J, Xu JL, Ye ZG, et al. Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution. J Alloys Compd, 2021, 885: 160995

    Article  CAS  Google Scholar 

  143. Liu X, He J, Zhao S, et al. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat Commun, 2018, 9: 4365

    Article  Google Scholar 

  144. Liang H, Zhang H, Zong Y, et al. Studies of Ni-Mg catalyst for stable high efficiency hydrogen storage. J Alloys Compd, 2022, 905: 164279

    Article  CAS  Google Scholar 

  145. Cherevko S, Geiger S, Kasian O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal Today, 2016, 262: 170–180

    Article  CAS  Google Scholar 

  146. Canales C, Olea AF, Gidi L, et al. Enhanced light-induced hydrogen evolution reaction by supramolecular systems of cobalt(II) and copper (II) octaethylporphyrins on glassy carbon electrodes. Electrochim Acta, 2017, 258: 850–857

    Article  CAS  Google Scholar 

  147. Zhang G, Ming K, Kang J, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta, 2018, 279: 19–23

    Article  CAS  Google Scholar 

  148. Li H, Zhu H, Zhang S, et al. Nano high-entropy materials: Synthesis strategies and catalytic applications. Small Struct, 2020, 1: 2000033

    Article  Google Scholar 

  149. Qiu HJ, Fang G, Wen Y, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A, 2019, 7: 6499–6506

    Article  CAS  Google Scholar 

  150. Yu J, Li J, Xu CY, et al. Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy, 2022, 98: 107266

    Article  CAS  Google Scholar 

  151. Jin Z, Lv J, Jia H, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small, 2019, 15: 1904180

    Article  CAS  Google Scholar 

  152. Feng G, Ning F, Song J, et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J Am Chem Soc, 2021, 143: 17117–17127

    Article  CAS  Google Scholar 

  153. Yao R, Zhou Y, Shi H, et al. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv Funct Mater, 2021, 31: 2009613

    Article  CAS  Google Scholar 

  154. Feng J, Lv F, Zhang W, et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv Mater, 2017, 29: 1703798

    Article  Google Scholar 

  155. An CH, Kang W, Deng QB, et al. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met, 2022, 41: 378–384

    Article  CAS  Google Scholar 

  156. Guang HL, Zhu SL, Liang YQ, et al. Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Met, 2021, 40: 1031–1039

    Article  CAS  Google Scholar 

  157. Li P, Hong W, Liu W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin J Struc Chem, 2021, 40: 1365–1371

    CAS  Google Scholar 

  158. Chen H, Guan C, Feng H. Pt-based high-entropy alloy nanoparticles as bifunctional electrocatalysts for hydrogen and oxygen evolution. ACS Appl Nano Mater, 2022, 5: 9810–9817

    Article  CAS  Google Scholar 

  159. Wu ZY, Chen FY, Li B, et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat Mater, 2023, 22: 100–108

    Article  CAS  Google Scholar 

  160. You J, Yao R, Ji W, et al. Research of high entropy alloys as electrocatalyst for oxygen evolution reaction. J Alloys Compd, 2022, 908: 164669

    Article  CAS  Google Scholar 

  161. Wang L, Duan X, Liu X, et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv Energy Mater, 2020, 10: 1903137

    Article  CAS  Google Scholar 

  162. Liu LH, Li N, Han M, et al. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met, 2022, 41: 125–131

    Article  CAS  Google Scholar 

  163. Zhu H, Zhu Z, Hao J, et al. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem Eng J, 2022, 431: 133251

    Article  CAS  Google Scholar 

  164. Ma P, Zhang S, Zhang M, et al. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci China Mater, 2020, 63: 2613–2619

    Article  Google Scholar 

  165. Qiu HJ, Fang G, Gao J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater Lett, 2019, 1: 526–533

    Article  CAS  Google Scholar 

  166. Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun, 2013, 4: 2390

    Article  Google Scholar 

  167. McCrory CCL, Jung S, Peters JC, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc, 2013, 135: 16977–16987

    Article  CAS  Google Scholar 

  168. Liang Y, Li Y, Wang H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater, 2011, 10: 780–786

    Article  CAS  Google Scholar 

  169. Chen S, Qiao SZ. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano, 2013, 7: 10190–10196

    Article  CAS  Google Scholar 

  170. Zhao T, Zhong D, Hao G, et al. Porous CoNiOOH nanosheets derived from the well-mixed MOFs as stable and highly efficient electrocatalysts for water oxidation. Int J Hydrogen Energy, 2022, 47: 32928–32939

    Article  CAS  Google Scholar 

  171. Suntivich J, May KJ, Gasteiger HA, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334: 1383–1385

    Article  CAS  Google Scholar 

  172. Nandan R, Rekha MY, Devi HR, et al. High-entropy alloys for water oxidation: A new class of electrocatalysts to look out for. Chem Commun, 2021, 57: 611–614

    Article  CAS  Google Scholar 

  173. Fan K, Chen H, Ji Y, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun, 2016, 7: 11981

    Article  CAS  Google Scholar 

  174. Luo X, Shao Q, Pi Y, et al. Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction. ACS Catal, 2019, 9: 1013–1018

    Article  CAS  Google Scholar 

  175. Dai W, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J Power Sources, 2019, 430: 104–111

    Article  CAS  Google Scholar 

  176. Chen J, Ling Y, Yu X, et al. Water oxidation on CrMnFeCoNi high entropy alloy: Improvement through rejuvenation and spin polarization. J Alloys Compd, 2022, 929: 167344

    Article  CAS  Google Scholar 

  177. Tian Y, Chen S, He Y, et al. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res Energy, 2022, 1: e9120025

    Article  Google Scholar 

  178. Wang HF, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev, 2020, 49: 1414–1448

    Article  CAS  Google Scholar 

  179. Li X, Shen P, Luo Y, et al. PdFe single-atom alloy metallene for N2 electroreduction. Angew Chem Int Ed, 2022, 61: e202205923

    CAS  Google Scholar 

  180. Ge S, Zhang L, Hou J, et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl Energy Mater, 2022, 5: 9487–9494

    Article  CAS  Google Scholar 

  181. Gao S, Wei T, Sun J, et al. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct, 2022, 3: 2200086

    Article  CAS  Google Scholar 

  182. Luo Y, Li Q, Tian Y, et al. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J Mater Chem A, 2022, 10: 1742–1749

    Article  CAS  Google Scholar 

  183. Jin M, Liu W, Sun J, et al. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res, 2022, 15: 5842–5847

    Article  CAS  Google Scholar 

  184. Han L, Ou P, Liu W, et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci Adv, 2022, 8: eabm3779

    Article  CAS  Google Scholar 

  185. Guo F, Zhang M, Yi S, et al. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res Energy, 2022, 1: e9120027

    Article  Google Scholar 

  186. Ye H, Li Y. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res Energy, 2022, 1: e9120012

    Article  Google Scholar 

  187. Han L, Hou M, Ou P, et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal, 2021, 11: 509–516

    Article  CAS  Google Scholar 

  188. Liu S, Wang L, Yang H, et al. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn-CO2 batteries. Small, 2022, 18: 2104965

    Article  CAS  Google Scholar 

  189. Suryanto BHR, Kang CSM, Wang D, et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett, 2018, 3: 1219–1224

    Article  CAS  Google Scholar 

  190. Gao S, Wang T, Jin M, et al. Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci China Mater, 2022, 66: 1013–1023

    Article  Google Scholar 

  191. Gao S, Jin M, Sun J, et al. Coralloid Au enables high-performance Zn-CO2 battery and self-driven CO production. J Mater Chem A, 2021, 9: 21024–21031

    Article  CAS  Google Scholar 

  192. Xie Z, Qiu Y, Gao S, et al. Surface oxidized Ag nanofilms towards highly effective CO2 reduction. ChemElectroChem, 2021, 8: 3579–3583

    Article  CAS  Google Scholar 

  193. Wang K, Wang X, Li Z, et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy, 2020, 77: 105162

    Article  CAS  Google Scholar 

  194. Tanifuji K, Ohki Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem Rev, 2020, 120: 5194–5251

    Article  CAS  Google Scholar 

  195. Peng X, Hou J, Mi Y, et al. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale, 2021, 13: 4767–4773

    Article  CAS  Google Scholar 

  196. Wang H, Zhang F, Jin M, et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater Today Phys, 2023, 30: 100944

    Article  CAS  Google Scholar 

  197. Gao F, He J, Wang H, et al. Te-mediated electro-driven oxygen evolution reaction. Nano Res Energy, 2022, 1: e9120029

    Article  Google Scholar 

  198. Ding J, Yang H, Zhang S, et al. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small, 2022, 18: 2204524

    Article  CAS  Google Scholar 

  199. Wei T, Bao H, Wang X, et al. Ionic liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem, 2023, 15: e202201411

    Article  CAS  Google Scholar 

  200. Zhu Z, Meng H, Ren P. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution. Colloids Surfs A-Physicochem Eng Aspects, 2022, 648: 129404

    Article  CAS  Google Scholar 

  201. Meng G, Cao H, Wei T, et al. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem Commun, 2022, 58: 11839–11842

    Article  CAS  Google Scholar 

  202. Cao BX, Wei DX, Zhang XF, et al. Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: The role of heterogeneous strain distribution and environmentally assisted intergranular damage. Mater Today Phys, 2022, 24: 100653

    Article  CAS  Google Scholar 

  203. Jin M, Liu S, Meng G, et al. Low-coordinated Mo clusters for high-efficiency electrocatalytic hydrogen peroxide production. Adv Mater Inter, 2023, 10: 2201144

    Article  CAS  Google Scholar 

  204. Shen H, Wei T, Liu Q, et al. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J Colloid Interface Sci, 2023, 634: 730–736

    Article  CAS  Google Scholar 

  205. Wei T, Liu W, Zhang S, et al. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem Commun, 2023, 59: 442–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22075211, 21601136, 51971157, and 51621003), and Tianjin Science Fund for Distinguished Young Scholars (19JCJQJC61800).

Author information

Authors and Affiliations

Authors

Contributions

The original idea was conceived by Zhang Q, Lian K, and Liu X. The manuscript was drafted by Zhang Q, Lian K, Qi G, Zhang S, Liu Q, Luo Y, Luo J, and Liu X. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Gaocan Qi  (齐高璨), Yang Luo  (罗扬) or Xijun Liu  (刘熙俊).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Quan Zhang is a doctoral student at the School of Materials Science and Engineering, Tianjin University of Technology. He received a bachelor degree in material forming and control engineering from Shandong University of Technology in 2015, and a Master degree in material processing engineering from Yanshan University in 2018. His research interests focus on high-entropy alloys for electrocatalysis.

Gaocan Qi received his PhD degree from the School of Materials Science and Engineering, Tianjin University in 2014. His research interest mainly focuses on the surface chemistry of low-dimensional materials, including molecule/ion adsorption, energy regulation and catalytic reaction.

Yang Luo received his double PhD degrees in chemical technology from Institute of Process Engineering, Chinese Academy of Sciences and in applied physics from the City University of Hong Kong (CityU, 2020). He is particularly interested in researching environmental and energy materials, green chemical technologies, and wearable electronics. He has completed previous postdoctoral and early-career (SNSF) research at the University of Hong Kong and Swiss Federal Laboratories for Materials Science and Technology (Empa). He is currently a Research Scientist at ETH Zürich (Marie Sklodowska-Curie actions Seal of Excellence) and a Honorary Research Associate at CityU.

Xijun Liu received his PhD degree from the College of Science, Beijing University of Chemical Technology in 2014. Then, he joined the School of Materials Science and Engineering, Tianjin University of Technology. Currently, he is a full time professor at the School of Resources, Environment and Materials, Guangxi University. His current scientific interests focus on nanomaterials, heterogeneous catalysis, and materials design for catalysts and energy conversion/storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Lian, K., Qi, G. et al. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Sci. China Mater. 66, 1681–1701 (2023). https://doi.org/10.1007/s40843-022-2379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2379-8

Keywords

Navigation