Skip to main content
Log in

A new piezoelectric hybrid metal thiocyanide for energy harvesting and human motion sensing

新型杂化金属硫氰化物压电体用于能量收集和动作传感

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Hybrid organic-inorganic piezoelectrics have received considerable attention in recent years owing to their fascinating performance, facile synthesis, and mechanical flexibility. However, the reported systems usually contain toxic heavy metals or are unstable due to sensitive metal halide bonds in air. In this context, eco-friendly and stable hybrid materials with excellent piezoelectric properties are highly sought after. Here, a new stable zero-dimensional hybrid piezoelectric, [Me-V]3Mn(SCN)5 (Me-V, 1-methyl-[4,4′]-bi-pyridinium), based on a pseudo-halogen environmentally friendly anion of SCN was synthesized. More importantly, the mechanical energy harvesting properties of its flexible composite films, [Me-V]3Mn(SCN)5/PBAT (PBAT, polybutylene adipate terephthalate), with a series of weight ratios (1, 5, 10, 15, and 20 wt%) of [Me-V]3Mn(SCN)5 are reported. Experimental results demonstrate that the 15 wt% [Me-V]3Mn-(SCN)5/PBAT devices present an exceptional performance in energy harvesting, which can produce a maximum output voltage of 18.49 V and a power density of 7.88 µW cm−2 under an applied force of only 0.03 MPa, catching up with those of the state-of-the-art piezoelectric energy harvesting devices. Meanwhile, a typical device was demonstrated to exhibit excellent mechanical durability under 5500 cycles and environmentally stable over 60 days. Furthermore, the devices also show good sensitivity in monitoring human body motions, including finger tapping, wrist and elbow bending, and foot stepping. This work proves that lead- and halide-free hybrid piezoelectrics can serve as eco-friendly materials for flexible sensing and energy harvesting.

摘要

杂化有机-无机压电材料因其电光性能优异、合成简单以及机械柔性等优点而受到广泛关注, 在能源和传感领域显示出巨大的应用潜力. 本文合成了一例新的零维杂化压电材料[Me−V]3Mn(SCN)5, 并与聚己二酸丁二酯对苯二甲酸丁二酯复合成膜制备了用于机械能收集的压电器件. 实验结果表明, 15 wt%组分的压电器件具有优异的能量收集性能, 在仅0.03 MPa作用力下, 可产生18.49 V的最大输出电压和7.88 µW cm−2的功率密度. 同时, 该器件在循环5500圈及60天内仍保持优异的压电性能. 此外, 该器件在包括手指敲击、手腕/肘部弯曲和踩踏等动作传感方面表现出良好的敏感性. 这项工作证明了无铅无卤的杂化压电材料在柔性传感和能量收集方面具有巨大的应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Xu Y, Dong S, et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat Commun, 2021, 12: 3508

    Article  CAS  Google Scholar 

  2. Guo L, Zhong C, Cao J, et al. Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy, 2019, 62: 513–520

    Article  CAS  Google Scholar 

  3. Ge M, Xu D, Chen Z, et al. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Lett, 2021, 21: 6764–6772

    Article  CAS  Google Scholar 

  4. Chen Z, Wang Z, Li X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano, 2017, 11: 4507–4513

    Article  CAS  Google Scholar 

  5. Vijayakanth T, Ram F, Praveenkumar B, et al. All-organic composites of ferro- and piezoelectric phosphonium salts for mechanical energy harvesting application. Chem Mater, 2019, 31: 5964–5972

    Article  CAS  Google Scholar 

  6. Li K, Qin Y, Li ZG, et al. Elastic properties related energy conversions of coordination polymers and metal-organic frameworks. Coord Chem Rev, 2022, 470: 214692

    Article  CAS  Google Scholar 

  7. Vijayakanth T, Liptrot DJ, Gazit E, et al. Recent advances in organic and organic-inorganic hybrid materials for piezoelectric mechanical energy harvesting. Adv Funct Mater, 2022, 32: 2109492

    Article  CAS  Google Scholar 

  8. You YM, Liao WQ, Zhao D, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science, 2017, 357: 306–309

    Article  CAS  Google Scholar 

  9. Yang D, Luo L, Gao Y, et al. Rational design of one-dimensional hybrid organic-inorganic perovskites with room-temperature ferroelectricity and strong piezoelectricity. Mater Horiz, 2019, 6: 1463–1473

    Article  Google Scholar 

  10. Sahu M, Hajra S, Lee K, et al. Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics. Crystals, 2021, 11: 85

    Article  CAS  Google Scholar 

  11. Erturun U, Eisape AA, Kang SH, et al. Energy harvester using piezoelectric nanogenerator and electrostatic generator. Appl Phys Lett, 2021, 118: 063902

    Article  CAS  Google Scholar 

  12. Zhang ZX, Zhang HY, Zhang W, et al. Organometallic-based hybrid perovskite piezoelectrics with a narrow band gap. J Am Chem Soc, 2020, 142: 17787–17794

    Article  CAS  Google Scholar 

  13. Li W, Ji LJ. Perovskite ferroelectrics go metal free. Science, 2018, 361: 132

    Article  CAS  Google Scholar 

  14. Ji LJ, Sun SJ, Qin Y, et al. Mechanical properties of hybrid organic-inorganic perovskites. Coord Chem Rev, 2019, 391: 15–29

    Article  CAS  Google Scholar 

  15. Li K, Li ZG, Xu J, et al. Origin of ferroelectricity in two prototypical hybrid organic-inorganic perovskites. J Am Chem Soc, 2022, 144: 816–823

    Article  CAS  Google Scholar 

  16. Zhang Y, Song XJ, Zhang ZX, et al. Piezoelectric energy harvesting based on multiaxial ferroelectrics by precise molecular design. Matter, 2020, 2: 697–710

    Article  Google Scholar 

  17. Shi C, Ma JJ, Jiang JY, et al. Large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectrics. J Am Chem Soc, 2020, 142: jacs.0c00480

    Article  Google Scholar 

  18. Jiang F, Lee PS. Performance optimization strategies of halide perovskite-based mechanical energy harvesters. Nanoscale Horiz, 2022, 7: 1029–1046

    Article  CAS  Google Scholar 

  19. Wang ZX, Zhang H, Wang F, et al. Superior transverse piezoelectricity in a halide perovskite molecular ferroelectric thin film. J Am Chem Soc, 2020, 142: 12857–12864

    Article  CAS  Google Scholar 

  20. Khan AA, Huang G, Rana MM, et al. Superior transverse piezoelectricity in organic-inorganic hybrid perovskite nanorods for mechanical energy harvesting. Nano Energy, 2021, 86: 106039

    Article  CAS  Google Scholar 

  21. Huang G, Khan AA, Rana MM, et al. Achieving ultrahigh piezoelectricity in organic-inorganic vacancy-ordered halide double perovskites for mechanical energy harvesting. ACS Energy Lett, 2021, 6: 16–23

    Article  CAS  Google Scholar 

  22. Ippili S, Jella V, Kim J, et al. Unveiling predominant air-stable orga notin bromide perovskite toward mechanical energy harvesting. ACS Appl Mater Interfaces, 2020, 12: 16469–16480

    Article  CAS  Google Scholar 

  23. Liao WQ, Zhao D, Tang YY, et al. A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science, 2019, 363: 1206–1210

    Article  CAS  Google Scholar 

  24. Wu HS, Wei SM, Chen SW, et al. Metal-free perovskite piezoelectric nanogenerators for human-machine interfaces and self-powered electrical stimulation applications. Adv Sci, 2022, 9: 2105974

    Article  CAS  Google Scholar 

  25. Chen XG, Song XJ, Zhang ZX, et al. Two-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficient. J Am Chem Soc, 2020, 142: 1077–1082

    Article  CAS  Google Scholar 

  26. Wang B, Hong J, Yang Y, et al. Achievement of a giant piezoelectric coefficient and piezoelectric voltage coefficient through plastic molecular-based ferroelectric materials. Matter, 2022, 5: 1296–1304

    Article  CAS  Google Scholar 

  27. Pandey R, Sb G, Grover S, et al. Microscopic origin of piezoelectricity in lead-free halide perovskite: Application in nanogenerator design. ACS Energy Lett, 2019, 4: 1004–1011

    Article  CAS  Google Scholar 

  28. Guo TM, Gong YJ, Li ZG, et al. A new hybrid lead-free metal halide piezoelectric for energy harvesting and human motion sensing. Small, 2022, 18: 2103829

    Article  CAS  Google Scholar 

  29. Qin Y, Gao FF, Qian S, et al. Multifunctional chiral 2D lead halide perovskites with circularly polarized photoluminescence and piezoelectric energy harvesting properties. ACS Nano, 2022, 16: 3221–3230

    Article  CAS  Google Scholar 

  30. Jella V, Ippili S, Eom JH, et al. A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy, 2019, 57: 74–93

    Article  CAS  Google Scholar 

  31. Ding R, Zhang X, Sun XW. Organometal trihalide perovskites with intriguing ferroelectric and piezoelectric properties. Adv Funct Mater, 2017, 27: 1702207

    Article  Google Scholar 

  32. Li W, Wang Z, Deschler F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat Rev Mater, 2017, 2: 16099

    Article  Google Scholar 

  33. Vijayakanth T, Ram F, Praveenkumar B, et al. Piezoelectric energy harvesting from a ferroelectric hybrid salt [Ph3MeP]4[Ni(NCS)6] embedded in a polymer matrix. Angew Chem Int Ed, 2020, 59: 10368–10373

    Article  CAS  Google Scholar 

  34. Bourhis LJ, Dolomanov OV, Gildea RJ, et al. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment−Olex2 dissected. Acta Crystlogr Found Adv, 2015, 71: 59–75

    Article  CAS  Google Scholar 

  35. Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystlogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  36. Carter DJ, Raiteri P, Barnard KR, et al. Difference Hirshfeld fingerprint plots: A tool for studying polymorphs. CrystEngComm, 2017, 19: 2207–2215

    Article  CAS  Google Scholar 

  37. Gao JX, Zhang WY, Wu ZG, et al. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J Am Chem Soc, 2020, 142: 4756–4761

    Article  CAS  Google Scholar 

  38. Zhang ZX, Su CY, Gao JX, et al. Mechanochemistry enables optical-electrical multifunctional response and tunability in two-dimensional hybrid perovskites. Sci China Mater, 2021, 64: 706–716

    Article  CAS  Google Scholar 

  39. Hajra S, Tripathy A, Panigrahi BK, et al. Development and excitation performance of lead free electronic material: Eu and Fe doped Bi0.5Na0.5TiO3 for filter application. Mater Res Express, 2019, 6: 076304

    Article  CAS  Google Scholar 

  40. Bijelić J, Stanković A, Medvidović-Kosanović M, et al. Rational sol-gel-based synthesis design and magnetic, dielectric, and optical properties study of nanocrystalline Sr3Co2WO9 triple perovskite. J Phys Chem C, 2020, 124: 12794–12807

    Article  Google Scholar 

  41. Jain A, K. J. P, Sharma AK, et al. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym Eng Sci, 2015, 55: 1589–1616

    Article  CAS  Google Scholar 

  42. Kim P, Jones SC, Hotchkiss PJ, et al. Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater, 2007, 19: 1001–1005

    Article  CAS  Google Scholar 

  43. Li J, Zhu Z, Fang L, et al. Analytical, numerical, and experimental studies of viscoelastic effects on the performance of soft piezoelectric nanocomposites. Nanoscale, 2017, 9: 14215–14228

    Article  CAS  Google Scholar 

  44. Chen H, Zhou L, Fang Z, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv Funct Mater, 2021, 31: 2011073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975132 and 21991143), the Fundamental Research Funds for the Central Universities (63196006), and the PhD Candidate Research Innovation Fund of the School of Materials Science and Engineering, Nankai University.

Author information

Authors and Affiliations

Authors

Contributions

Bu XH and Li W conceived the idea and supervised this work. Zhao Y synthesized the crystal, performed the characterization and wrote the manuscript. An LC and Li K revised the manuscript. Gong YJ, Guo TM, and Gao FF analyzed the piezoelectric properties. Lei Y performed the strain-stress curves and moduli test. Li Q performed the single crystal test. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Kai Li  (李凯) or Wei Li  (李伟).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Wei Li is a full professor of the School of Materials Science and Engineering, Nankai University. His research focuses on the materials physics and chemistry of coordination polymers and hybrid organic-inorganic perovskites.

Kai Li obtained his PhD degree in 2021 from the School of Materials Science and Engineering, Nankai University. He joined Jinzhong University in 2022. His research focuses on hybrid organic-inorganic perovskite ferroelectrics.

Ying Zhao received her MSc degree (2020) from Guizhou University with Prof. Min He. She is now a postgraduate student at Nankai University under the supervision of Prof. Wei Li. Her research interest focuses on piezoelectric hybrid organic-inorganic materials.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., An, LC., Li, K. et al. A new piezoelectric hybrid metal thiocyanide for energy harvesting and human motion sensing. Sci. China Mater. 66, 1854–1860 (2023). https://doi.org/10.1007/s40843-022-2360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2360-x

Keywords

Navigation