Skip to main content
Log in

High-quality GaN grown on nitrogen-doped monolayer graphene without an intermediate layer

氮掺杂单层石墨烯上无中间层沉积高质量氮化镓

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

GaN on graphene/Al2O3 substrates grown via van der Waals epitaxy compensates for the deficiencies and defects caused by metal-organic chemical vapor deposition (MOCVD) on substrates with significant mismatches to GaN. However, the absence of dangling bonds on graphene leads to insufficient nucleation sites; hence, a thin layer of AlN or ZnO nanowalls should be deposited on graphene as an intermediate layer. In this work, high-quality GaN crystals with a low biaxial compressive stress of 0.023 GPa and low screw dislocation density of 9.76 × 107 cm−2 were successfully synthesized by MOCVD on nitrogen-doped graphene without a buffer layer. First-principles calculations demonstrated significant improvement in the adsorption energy of the Ga atom on the surface of nitrogen-doped graphene compared with that of pristine graphene, in agreement with the experimental observations of nucleation. In most cases, GaN films were obtained by forming C–Ga–N and N–Ga–N configurations via atomic nitrogen pretreatment on monolayer graphene. Therefore, it is hoped that the efficient method of atomic modulation of high-quality GaN films grown on nitrogen-doped graphene via interface manipulation used in this work will promote the industrial development of innovative semiconductor devices.

摘要

在石墨烯/ 氧化铝衬底上通过金属有机化学气相沉积法 (MOCVD)范德华外延生长的氮化镓(GaN)可以减少由于氮化镓与衬底 严重晶格失配产生的缺陷. 然而, 石墨烯表面缺少悬挂键导致氮化镓成 核位点很少, 因此, 常利用薄层AlN或ZnO纳米壁作为中间层沉积于石 墨烯上. 在无缓冲层的氮掺杂石墨烯上, 我们利用MOCVD法成功地直 接获得低应力(0.023 GPa)和低螺位错密度(9.76 × 107 cm−2)的高质量氮 化镓晶体. 第一性原理计算结果表明, 与本征石墨烯相比, 氮掺杂石墨 烯表面对镓原子的吸附能力明显提高, 这与氮化镓低温生长成核实验 观察到的结果一致. 在大多数情况下, 氮化镓在经过氮原子预处理的单 层石墨烯上倾向于形成C–Ga–N和N–Ga–N的成核位点. 本研究证明了 通过界面调控可在氮掺杂石墨烯上生长高质量的氮化镓薄膜, 是一种 有效的原子调控方法. 本方法为新型半导体器件的工业发展提供了新 思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arulkumaran S, Vicknesh S, Ng GI, et al. High vertical breakdown strength with low specific on-resistance AlGaN/AlN/GaN HEMTs on silicon. Phys Status Solidi RRL, 2011, 5: 37–39

    Article  CAS  Google Scholar 

  2. Polyakov AY, Yun JH, Ahn HK, et al. Photoluminescence enhancement by localized surface plasmons in AlGaN/GaN/AlGaN double heterostructures. Phys Status Solidi RRL, 2015, 9: 575–579

    Article  CAS  Google Scholar 

  3. Kim J, Bayram C, Park H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat Commun, 2014, 5: 4836

    Article  CAS  Google Scholar 

  4. Al Balushi ZY, Miyagi T, Lin YC, et al. The impact of graphene properties on GaN and AlN nucleation. Surf Sci, 2015, 634: 81–88

    Article  CAS  Google Scholar 

  5. Kim Y, Cruz SS, Lee K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544: 340–343

    Article  CAS  Google Scholar 

  6. Chung K, Lee CH, Yi GC. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 2010, 330: 655–657

    Article  CAS  Google Scholar 

  7. Mun DH, Bae H, Bae S, et al. Stress relaxation of GaN microstructures on a graphene-buffered Al2O3 substrate. Phys Status Solidi RRL, 2014, 8: 341–344

    Article  CAS  Google Scholar 

  8. Ning J, Yan C, Jia Y, et al. GaN films deposited on sapphire substrates sputter-coated with AlN followed by monolayer graphene for solid-state lighting. ACS Appl Nano Mater, 2020, 3: 5061–5069

    Article  CAS  Google Scholar 

  9. Jia Y, Ning J, Zhang J, et al. High-quality transferred GaN-based light-emitting diodes through oxygen-assisted plasma patterning of graphene. ACS Appl Mater Interfaces, 2021, 13: 32442–32449

    Article  CAS  Google Scholar 

  10. Liu F, Wang T, Zhang Z, et al. Lattice polarity manipulation of quasivdW epitaxial GaN films on graphene through interface atomic configuration. Adv Mater, 2022, 34: 2106814

    Article  CAS  Google Scholar 

  11. Chen Y, Zang H, Jiang K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy. Appl Phys Lett, 2020, 117: 051601

    Article  CAS  Google Scholar 

  12. Parr RG. Density functional theory. Annu Rev Phys Chem, 1983, 34: 631–656

    Article  CAS  Google Scholar 

  13. Brandbyge M, Mozos JL, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65: 165401

    Article  Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  15. Ernzerhof M, Scuseria GE. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys, 1999, 110: 5029–5036

    Article  CAS  Google Scholar 

  16. Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104

    Article  Google Scholar 

  17. Xiao Y, Wei Z, Wang Z. A limited memory BFGS-type method for large-scale unconstrained optimization. Comput Math Appl, 2008, 56: 1001–1009

    Article  Google Scholar 

  18. Walsh LA, Hinkle CL. Van der Waals epitaxy: 2D materials and topological insulators. Appl Mater Today, 2017, 9: 504–515

    Article  Google Scholar 

  19. Ke WC, Liang ZY, Tesfay ST, et al. Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybrid-AlN buffer layer. Appl Surf Sci, 2019, 494: 644–650

    Article  CAS  Google Scholar 

  20. Mulyo AL, Rajpalke MK, Kuroe H, et al. Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer. Nanotechnology, 2018, 30: 015604

    Article  Google Scholar 

  21. Park AH, Seo TH, Chandramohan S, et al. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale, 2015, 7: 15099–15105

    Article  CAS  Google Scholar 

  22. Son JH, Lee JL. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes. Opt Express, 2010, 18: 5466–5471

    Article  CAS  Google Scholar 

  23. Heinke H, Kirchner V, Einfeldt S, et al. X-ray diffraction analysis of the defect structure in epitaxial GaN. Appl Phys Lett, 2000, 77: 2145–2147

    Article  CAS  Google Scholar 

  24. Srikant V, Speck JS, Clarke DR. Mosaic structure in epitaxial thin films having large lattice mismatch. J Appl Phys, 1997, 82: 4286–4295

    Article  CAS  Google Scholar 

  25. Morant C, Andrey J, Prieto P, et al. XPS characterization of nitrogen-doped carbon nanotubes. Phys Stat Sol (a), 2006, 203: 1069–1075

    Article  CAS  Google Scholar 

  26. Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B, 2005, 109: 4707–4716

    Article  CAS  Google Scholar 

  27. Hellgren N, Guo J, Luo Y, et al. Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques. Thin Solid Films, 2005, 471: 19–34

    Article  CAS  Google Scholar 

  28. Robertson J. Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond Relat Mater, 1993, 2: 984–989

    Article  CAS  Google Scholar 

  29. Casanovas J, Ricart JM, Rubio J, et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J Am Chem Soc, 1996, 118: 8071–8076

    Article  CAS  Google Scholar 

  30. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal, 2012, 2: 781–794

    Article  CAS  Google Scholar 

  31. Xing Z, Ju Z, Zhao Y, et al. One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep, 2016, 6: 26146

    Article  CAS  Google Scholar 

  32. Sankaranarayanan S, Kandasamy P, Raju R, et al. Fabrication ofgallium nitride and nitrogen doped single layer graphene hybrid heterostructures for high performance photodetectors. Sci Rep, 2020, 10: 1–2

    Article  Google Scholar 

  33. Malard LM, Pimenta MA, Dresselhaus G, et al. Raman spectroscopy in graphene. Phys Rep, 2009, 473: 51–87

    Article  CAS  Google Scholar 

  34. Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotech, 2008, 3: 210–215

    Article  CAS  Google Scholar 

  35. Park JH, Lee JY, Park MD, et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth. Adv Mater Inter, 2019, 6: 1900821

    Article  CAS  Google Scholar 

  36. Thomson DB, Gehrke T, Linthicum KJ, et al. Ranges of deposition temperatures applicable for metalorganic vapor phase epitaxy of GaN films via the technique of pendeo-epitaxy. MRS Internet j nitride semicond res, 1999, 4: 269–274

    Article  Google Scholar 

  37. Song YH, Choi SC, Choi JY, et al. Lateral epitaxial overgrowth of GaN and its crystallographic tilt depending on the growth condition. phys stat sol (a), 2000, 180: 247–250

    Article  CAS  Google Scholar 

  38. Hino T, Tomiya S, Miyajima T, et al. Characterization of threading dislocations in GaN epitaxial layers. Appl Phys Lett, 2000, 76: 3421–3423

    Article  CAS  Google Scholar 

  39. Chen Z, Zhang X, Dou Z, et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater, 2018, 30: 1801608

    Article  Google Scholar 

  40. Ko HJ, Yao T, Chen Y, et al. Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy. J Appl Phys, 2002, 92: 4354–4360

    Article  CAS  Google Scholar 

  41. Li T, Liu C, Zhang Z, et al. Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite. Nanoscale Res Lett, 2018, 13: 130

    Article  CAS  Google Scholar 

  42. Kitamura T, Nakashima S, Nakamura N, et al. Raman scattering analysis of GaN with various dislocation densities. Phys Status Solidi (c), 2008, 5: 1789–1791

    Article  CAS  Google Scholar 

  43. Tung LT, Lin KL, Chang EY, et al. Photoluminescence and Raman studies of GaN films grown by MOCVD. J Phys-Conf Ser, 2009, 187: 012021

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2021YFA0716400), the General Program of Natural Science Foundation of China (62274134), the National Science Fund for Distinguished Young Scholars (61925404), Wuhu and Xidian University Special Fund for Industry-university-research Cooperation (XWYCXY-012021005), the National Key Science and Technology Special Project (2009ZYHW0015), and the Fundamental Research Funds for the Central Universities (JBF201101). Yanqing Jia and Chaochao Yan are appreciated for assistance in the experiments and valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

Chen D and Ning J designed and engineered the samples; Chen D and Zhao J performed the experiments; Chen D and Wang D performed the data analysis; Chen D and Ning J wrote the paper with the support from Zhang J and Hao Y; Wang B contributed to the theoretical calculation. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Jing Ning  (宁静) or Dong Wang  (王东).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Jing Ning received her PhD degree from Xidian University in 2015 under the supervision of Prof. Jincheng Zhang. Currently, she is a professor at Xidian University. Her research interest focuses on wide-bandgap semiconductors, novel 2D materials and novel 2D material-based devices.

Dong Wang received his PhD degree from Xi’an Jiaotong University in 2009 under the supervision of Prof. Xun Hou. Currently, he is a professor at Xidian University and is also the vice president of Anhui Semiconductor Industry Association. His research interest focuses on wide-band-gap semiconductors and novel 2D material-based devices.

Danni Chen is currently studying at Xidian University for a Master’s degree under the supervision of Prof. Dong Wang. Her research interest focuses on wide-bandgap semiconductors and novel 2D materials.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Ning, J., Wang, D. et al. High-quality GaN grown on nitrogen-doped monolayer graphene without an intermediate layer. Sci. China Mater. 66, 1968–1977 (2023). https://doi.org/10.1007/s40843-022-2320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2320-8

Keywords

Navigation