Skip to main content
Log in

Metal-organic layers: Preparation and applications

金属有机层: 制备与应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Metal-organic layers (MOLs) have attracted considerable interest in materials science because of their unique characteristics. The past decade has witnessed the rapid development of MOLs in synthesis and applications. Here we present a review of the latest research advances on MOLs. First, we introduce the two preparation approaches for MOLs, namely, the top-down and bottom-up approaches. Then, we discuss the applications of MOLs in gas separation, catalysis, energy catalysis and conversion, and chemical sensors, which emphasize the performance-morphologies/structures relationship of MOLs. At the end of this review, we provide an outlook on the opportunities and challenges of MOLs in the future.

摘要

金属有机层(MOLs)以其独特的特性在材料科学中引起了广泛的关注. 近十年来, MOLs在合成和应用方面发展迅速. 本文综述了MOLs的最新研究进展. 首先, 我们介绍了MOLs的两种制备方法, 即自上而下和自下而上的方法. 然后, 我们讨论了MOLs在气体分离、 催化、 能源催化和转化以及化学传感器等方面的应用, 重点揭示了MOLs的性能-形貌/结构关系. 最后, 我们展望了MOLs在未来发展的机遇和挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444

    Google Scholar 

  2. Han Y, Li JR, Xie Y, et al. Substitution reactions in metal-organic frameworks and metal-organic polyhedra. Chem Soc Rev, 2014, 43: 5952–5981

    CAS  Google Scholar 

  3. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev, 2012, 112: 673–674

    CAS  Google Scholar 

  4. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378: 703–706

    CAS  Google Scholar 

  5. Jiang W, Wang H, Zhang X, et al. Two-dimensional polymeric carbon nitride: Structural engineering for optimizing photocatalysis. Sci China Chem, 2018, 61: 1205–1213

    CAS  Google Scholar 

  6. Lin ZJ, Lü J, Hong M, et al. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem Soc Rev, 2014, 43: 5867–5895

    CAS  Google Scholar 

  7. Taddei M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord Chem Rev, 2017, 343: 1–24

    CAS  Google Scholar 

  8. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev, 2020, 120: 1438–1511

    CAS  Google Scholar 

  9. Yin H, Tang Z. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev, 2016, 45: 4873–4891

    CAS  Google Scholar 

  10. Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61: 159–184

    CAS  Google Scholar 

  11. Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res, 2011, 44: 957–968

    CAS  Google Scholar 

  12. Carné A, Carbonell C, Imaz I, et al. Nanoscale metal-organic materials. Chem Soc Rev, 2011, 40: 291–305

    Google Scholar 

  13. Ma S, Cai M, Cheng T, et al. Two-dimensional organic-inorganic hybrid perovskite: From material properties to device applications. Sci China Mater, 2018, 61: 1257–1277

    CAS  Google Scholar 

  14. Wang S, McGuirk CM, d’Aquino A, et al. Metal-organic framework nanoparticles. Adv Mater, 2018, 30: 1800202

    Google Scholar 

  15. Kim S, Wang H, Lee YM. 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew Chem Int Ed, 2019, 58: 17512–17527

    CAS  Google Scholar 

  16. Liu J, Yu H, Wang L, et al. Two-dimensional metal-organic frameworks nanosheets: Synthesis strategies and applications. Inorg Chim Acta, 2018, 483: 550–564

    CAS  Google Scholar 

  17. Wang J, Li N, Xu Y, et al. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem Eur J, 2020, 26: 6402–6422

    CAS  Google Scholar 

  18. Zhao M, Huang Y, Peng Y, et al. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem Soc Rev, 2018, 47: 6267–6295

    CAS  Google Scholar 

  19. Zhao P, Jian M, Zhang Q, et al. A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: Graphene and GO, MoS2, MXenes, and 2D MOFs. J Mater Chem A, 2019, 7: 16598–16621

    CAS  Google Scholar 

  20. Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem Rev, 2018, 118: 6189–6235

    CAS  Google Scholar 

  21. Duan J, Li Y, Pan Y, et al. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord Chem Rev, 2019, 395: 25–45

    CAS  Google Scholar 

  22. Xiao X, Zou L, Pang H, et al. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev, 2020, 49: 301–331

    CAS  Google Scholar 

  23. Xu M, Yang SS, Gu ZY. Two-dimensional metal-organic framework nanosheets: A rapidly growing class of versatile nanomaterials for gas separation, MALDI-TOF matrix and biomimetic applications. Chem Eur J, 2018, 24: 15131–15142

    CAS  Google Scholar 

  24. Zhao W, Peng J, Wang W, et al. Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord Chem Rev, 2018, 377: 44–63

    CAS  Google Scholar 

  25. Zhao M, Lu Q, Ma Q, et al. Two-dimensional metal-organic framework nanosheets. Small Methods, 2017, 1: 1600030

    Google Scholar 

  26. Abhervé A, Mañas-Valero S, Clemente-León M, et al. Graphene related magnetic materials: Micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem Sci, 2015, 6: 4665–4673

    Google Scholar 

  27. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568–571

    CAS  Google Scholar 

  28. Ding Y, Chen YP, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139: 9136–9139

    CAS  Google Scholar 

  29. Dou JH, Sun L, Ge Y, et al. Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J Am Chem Soc, 2017, 139: 13608–13611

    CAS  Google Scholar 

  30. Kondo A, Kajiro H, Noguchi H, et al. Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition: framework dimensionality-dependent gas adsorptivities. J Am Chem Soc, 2011, 133: 10512–10522

    CAS  Google Scholar 

  31. Motoyama S, Makiura R, Sakata O, et al. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J Am Chem Soc, 2011, 133: 5640–5643

    CAS  Google Scholar 

  32. Sheberla D, Sun L, Blood-Forsythe MA, et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc, 2014, 136: 8859–8862

    CAS  Google Scholar 

  33. Tan JC, Saines PJ, Bithell EG, et al. Hybrid nanosheets of an inorganic-organic framework material: Facile synthesis, structure, and elastic properties. ACS Nano, 2012, 6: 615–621

    CAS  Google Scholar 

  34. Coleman JN. Liquid exfoliation of defect-free graphene. Acc Chem Res, 2013, 46: 14–22

    CAS  Google Scholar 

  35. Chandrasekhar P, Mukhopadhyay A, Savitha G, et al. Orthogonal self-assembly of a trigonal triptycene triacid: Signaling of exfoliation of porous 2D metal-organic layers by fluorescence and selective CO2 capture by the hydrogen-bonded MOF. J Mater Chem A, 2017, 5: 5402–5412

    CAS  Google Scholar 

  36. Huang J, Li Y, Huang RK, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew Chem Int Ed, 2018, 57: 4632–4636

    CAS  Google Scholar 

  37. Kambe T, Sakamoto R, Hoshiko K, et al. π-conjugated nickel bis-(dithiolene) complex nanosheet. J Am Chem Soc, 2013, 135: 2462–2465

    CAS  Google Scholar 

  38. Wang HS, Li J, Li JY, et al. Lanthanide-based metal-organic frame-work nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater, 2017, 9: e354

    CAS  Google Scholar 

  39. Xu M, Yuan S, Chen XY, et al. Two-dimensional metal-organic framework nanosheets as an enzyme inhibitor: Modulation of the α−chymotrypsin activity. J Am Chem Soc, 2017, 139: 8312–8319

    CAS  Google Scholar 

  40. Zheng H, Huang S, Luo M, et al. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew Chem Int Ed, 2020, 59: 23588–23592

    CAS  Google Scholar 

  41. Kondo A, Noguchi H, Carlucci L, et al. Double-step gas sorption of a two-dimensional metal-organic framework. J Am Chem Soc, 2007, 129: 12362–12363

    CAS  Google Scholar 

  42. Ang H, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl Mater Interfaces, 2017, 9: 28079–28088

    CAS  Google Scholar 

  43. Cao L, Lin Z, Shi W, et al. Exciton migration and amplified quenching on two-dimensional metal-organic layers. J Am Chem Soc, 2017, 139: 7020–7029

    CAS  Google Scholar 

  44. Feng D, Gu ZY, Li JR, et al. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed, 2012, 51: 10307–10310

    CAS  Google Scholar 

  45. He C, Lu K, Liu D, et al. Nanoscale metal-organic frameworks for the Co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc, 2014, 136: 5181–5184

    CAS  Google Scholar 

  46. Zhang J, Chen Y, Wang X. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ Sci, 2015, 8: 3092–3108

    CAS  Google Scholar 

  47. Xiao Y, Chen C, Wu Y, et al. Fabrication of two-dimensional metal-organic framework nanosheets through crystal dissolution-growth kinetics. ACS Appl Mater Interfaces, 2022, 14: 7192–7199

    CAS  Google Scholar 

  48. Ren X, Liu W, Zhou H, et al. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem Eng J, 2022, 431: 134176

    CAS  Google Scholar 

  49. Deng C, Gao Y, Yao Y, et al. Conversion of layered materials to ultrathin amorphous nanosheets induced by ball-milling insertion and pure-water exfoliation. J Mater Chem A, 2022, 10: 11766–11773

    CAS  Google Scholar 

  50. Niu K, Xu Y, Wang H, et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci Adv, 2017, 3: e1700921

    Google Scholar 

  51. Han B, Ou X, Deng Z, et al. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew Chem Int Ed, 2018, 57: 16811–16815

    CAS  Google Scholar 

  52. Hu S, Yan J, Huang X, et al. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens Actuat B-Chem, 2018, 267: 312–319

    CAS  Google Scholar 

  53. Kornienko N, Zhao Y, Kley CS, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc, 2015, 137: 14129–14135

    CAS  Google Scholar 

  54. Maka VK, Mukhopadhyay A, Savitha G, et al. Fluorescent 2D metal-organic framework nanosheets (MONs): Design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale, 2018, 10: 22389–22399

    CAS  Google Scholar 

  55. Yang W, Wang HJ, Liu RR, et al. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew Chem Int Ed, 2021, 60: 409–414

    CAS  Google Scholar 

  56. Zou C, Li Q, Cheng F, et al. Homochiral porous coordination polymers with a rare utk topology and two types of uniform channels for enantioseparation. CrystEngComm, 2017, 19: 2718–2722

    CAS  Google Scholar 

  57. Peng X, Pelz PM, Zhang Q, et al. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat Commun, 2022, 13: 5197

    CAS  Google Scholar 

  58. Xia D, Sun K, Zeng Y, et al. The organic bromide sources adjusting the shape and band structures of BiOBr nanosheets for enhanced photodegradation performances of BPA. Catalysts, 2022, 12: 820

    CAS  Google Scholar 

  59. Yang X, Shi Y, Xie K, et al. Cocrystallization enabled spatial self-confinement approach to synthesize crystalline porous metal oxide nanosheets for gas sensing. Angew Chem Int Ed, 2022, 61: e202207816

    CAS  Google Scholar 

  60. Zeng T, Meng X, Huang H, et al. Controllable synthesis of web-footed PdCu nanosheets and their electrocatalytic applications. Small, 2022, 18: 2107623

    CAS  Google Scholar 

  61. Yu T, Wang Y, Jiang K, et al. Catechol-coordinated framework film-based micro-supercapacitors with AC line filtering performance. Chem Eur J, 2021, 27: 6340–6347

    CAS  Google Scholar 

  62. Wang H, Qiu F, Lu C, et al. A terpyridine-Fe2+-based coordination polymer film for on-chip micro-supercapacitor with AC line-filtering performance. Polymers, 2021, 13: 1002

    CAS  Google Scholar 

  63. Pan L, Jiang K, Zhai G, et al. A novel 2D conjugated coordination framework with a narrow bandgap for micro-supercapacitors. Energy Tech, 2022, 10: 2200133

    CAS  Google Scholar 

  64. Yang H, Zhao Y, Chen Z, et al. A narrow bandgap, isocyanide-based coordination polymer framework for micro-supercapacitors with AC line-filtering performance. Macro Chem Phys, 2022, 223: 2200037

    CAS  Google Scholar 

  65. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    CAS  Google Scholar 

  66. Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41: 666–686

    CAS  Google Scholar 

  67. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331

    CAS  Google Scholar 

  68. Nielsen RB, Kongshaug KO, Fjellvåg H. Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). J Mater Chem, 2008, 18: 1002–1007

    CAS  Google Scholar 

  69. Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nat Mater, 2010, 9: 565–571

    CAS  Google Scholar 

  70. Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346: 1356–1359

    CAS  Google Scholar 

  71. Huang X, Sheng P, Tu Z, et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat Commun, 2015, 6: 7408

    CAS  Google Scholar 

  72. Deng JH, Wen YQ, Willman J, et al. Facile exfoliation of 3D pillared metal-organic frameworks (MOFs) to produce MOF nanosheets with functionalized surfaces. Inorg Chem, 2019, 58: 11020–11027

    CAS  Google Scholar 

  73. Kang Z, Fan L, Sun D. Recent advances and challenges of metal-organic framework membranes for gas separation. J Mater Chem A, 2017, 5: 10073–10091

    CAS  Google Scholar 

  74. Jiang Q, Zhou C, Meng H, et al. Two-dimensional metal-organic framework nanosheets: Synthetic methodologies and electrocatalytic applications. J Mater Chem A, 2020, 8: 15271–15301

    CAS  Google Scholar 

  75. Li Y, Fu Z, Xu G. Metal-organic framework nanosheets: Preparation and applications. Coord Chem Rev, 2019, 388: 79–106

    CAS  Google Scholar 

  76. Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater, 2015, 14: 48–55

    CAS  Google Scholar 

  77. Li F, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed, 2019, 58: 7051–7056

    CAS  Google Scholar 

  78. Hu A, Pang Q, Tang C, et al. Epitaxial growth and integration of insulating metal-organic frameworks in electrochemistry. J Am Chem Soc, 2019, 141: 11322–11327

    CAS  Google Scholar 

  79. Zhuang L, Ge L, Liu H, et al. A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal-organic framework nanosheets for the oxygen evolution reaction. Angew Chem Int Ed, 2019, 58: 13565–13572

    CAS  Google Scholar 

  80. Amo-Ochoa P, Welte L, González-Prieto R, et al. Single layers of a multifunctional laminar Cu(I,II) coordination polymer. Chem Commun, 2010, 46: 3262–3264

    CAS  Google Scholar 

  81. Li PZ, Maeda Y, Xu Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem Commun, 2011, 47: 8436–8438

    CAS  Google Scholar 

  82. Foster JA, Henke S, Schneemann A, et al. Liquid exfoliation of alkylether functionalised layered metal-organic frameworks to nanosheets. Chem Commun, 2016, 52: 10474–10477

    CAS  Google Scholar 

  83. Le TH, Oh Y, Kim H, et al. Exfoliation of 2D materials for energy and environmental applications. Chem Eur J, 2020, 26: 6360–6401

    CAS  Google Scholar 

  84. Kondo A, Tiew CC, Moriguchi F, et al. Fabrication of metal-organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans, 2013, 42: 15267

    CAS  Google Scholar 

  85. Mishra RS, Bieler TR, Mukherjee AK. Superplasticity in powder metallurgy aluminum alloys and composites. Acta Metall Mater, 1995, 43: 877–891

    CAS  Google Scholar 

  86. Chakraborty G, Park IH, Medishetty R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications. Chem Rev, 2021, 121: 3751–3891

    CAS  Google Scholar 

  87. Peng Y, Li Y, Ban Y, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew Chem Int Ed, 2017, 56: 9757–9761

    CAS  Google Scholar 

  88. Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun, 2017, 8: 14460

    CAS  Google Scholar 

  89. Chi C, Wang X, Peng Y, et al. Facile preparation of graphene oxide membranes for gas separation. Chem Mater, 2016, 28: 2921–2927

    CAS  Google Scholar 

  90. Cliffe MJ, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework. J Am Chem Soc, 2017, 139: 5397–5404

    CAS  Google Scholar 

  91. Li Y, Huang J, Mo ZW, et al. Multistep evolution from a metal-organic framework to ultrathin nanosheets. Sci Bull, 2019, 64: 964–967

    Google Scholar 

  92. Pang W, Shao B, Tan XQ, et al. Exfoliation of metal-organic frameworks into efficient single-layer metal-organic nanosheet electro-catalysts by the synergistic action of host-guest interactions and sonication. Nanoscale, 2020, 12: 3623–3629

    CAS  Google Scholar 

  93. Au VKM, Nakayashiki K, Huang H, et al. Stepwise expansion of layered metal-organic frameworks for nonstochastic exfoliation into porous nanosheets. J Am Chem Soc, 2019, 141: 53–57

    CAS  Google Scholar 

  94. Huang J, Wu JQ, Shao B, et al. Ion-induced delamination of layered bulk metal-organic frameworks into ultrathin nanosheets for boosting the oxygen evolution reaction. ACS Sustain Chem Eng, 2020, 8: 10554–10563

    CAS  Google Scholar 

  95. Li Y, Mo ZW, Zhang XW, et al. A metal-ligand layer compatible with various types of pillars for new porous coordination polymers. Cryst Growth Des, 2020, 20: 7021–7026

    CAS  Google Scholar 

  96. Lu WG, Jiang L, Feng XL, et al. Four 3D porous metal-organic frameworks with various layered and pillared motifs. Cryst Growth Des, 2008, 8: 986–994

    CAS  Google Scholar 

  97. Zhang JH, Yang W, Zhang M, et al. Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy, 2021, 80: 105542

    CAS  Google Scholar 

  98. Kambe T, Sakamoto R, Kusamoto T, et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: A potential organic two-dimensional topological insulator. J Am Chem Soc, 2014, 136: 14357–14360

    CAS  Google Scholar 

  99. Sakamoto R, Hoshiko K, Liu Q, et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun, 2015, 6: 6713

    CAS  Google Scholar 

  100. Tsukamoto T, Takada K, Sakamoto R, et al. Coordination nanosheets based on terpyridine-zinc(II) complexes: As photoactive host materials. J Am Chem Soc, 2017, 139: 5359–5366

    CAS  Google Scholar 

  101. Clough AJ, Yoo JW, Mecklenburg MH, et al. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc, 2014, 137: 118–121

    Google Scholar 

  102. Clough AJ, Skelton JM, Downes CA, et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J Am Chem Soc, 2017, 139: 10863–10867

    CAS  Google Scholar 

  103. Bauer T, Zheng Z, Renn A, et al. Synthesis of free-standing, mono-layered organometallic sheets at the air/water interface. Angew Chem Int Ed, 2011, 50: 7879–7884

    CAS  Google Scholar 

  104. Dong R, Pfeffermann M, Liang H, et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed, 2015, 54: 12058–12063

    CAS  Google Scholar 

  105. Dong R, Zheng Z, Tranca DC, et al. Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frameworks for electrocatalytic H2 production. Chem Eur J, 2017, 23: 2255–2260

    CAS  Google Scholar 

  106. Jiang Y, Ryu GH, Joo SH, et al. Porous two-dimensional monolayer metal-organic framework material and its use for the size-selective separation of nanoparticles. ACS Appl Mater Interfaces, 2017, 9: 28107–28116

    CAS  Google Scholar 

  107. Wang L, Sahabudeen H, Zhang T, et al. Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. npj 2D Mater Appl, 2018, 2: 26

    Google Scholar 

  108. Sakaida S, Otsubo K, Sakata O, et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat Chem, 2016, 8: 377–383

    CAS  Google Scholar 

  109. Chen DM, Zhang NN, Tian JY, et al. Pore modulation of metal-organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. J Mater Chem A, 2017, 5: 4861–4867

    CAS  Google Scholar 

  110. Wang B, Luo Y, Liu B, et al. Field-effect transistor based on an in situ grown metal-organic framework film as a liquid-gated sensing device. ACS Appl Mater Interfaces, 2019, 11: 35935–35940

    CAS  Google Scholar 

  111. Yang C, Schellhammer KS, Ortmann F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew Chem Int Ed, 2017, 56: 3920–3924

    CAS  Google Scholar 

  112. Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc Chem Res, 2010, 43: 1166–1175

    CAS  Google Scholar 

  113. Xu G, Yamada T, Otsubo K, et al. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc, 2012, 134: 16524–16527

    CAS  Google Scholar 

  114. Li G, Zhang X, Zhang H, et al. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl Catal B-Environ, 2019, 249: 147–154

    CAS  Google Scholar 

  115. Zheng S, Li B, Tang Y, et al. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale, 2018, 10: 13270–13276

    CAS  Google Scholar 

  116. Zhong H, Ly KH, Wang M, et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed, 2019, 58: 10677–10682

    CAS  Google Scholar 

  117. Xu G, Otsubo K, Yamada T, et al. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J Am Chem Soc, 2013, 135: 7438–7441

    CAS  Google Scholar 

  118. Wang Y, Zhao M, Ping J, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater, 2016, 28: 4149–4155

    CAS  Google Scholar 

  119. Huang Y, Zhao M, Han S, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater, 2017, 29: 1700102

    Google Scholar 

  120. Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets. Adv Mater, 2015, 27: 7372–7378

    CAS  Google Scholar 

  121. Cao F, Zhao M, Yu Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application J Am Chem Soc, 2016, 138: 6924–6927

    CAS  Google Scholar 

  122. Cao L, Lin Z, Peng F, et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew Chem Int Ed, 2016, 55: 4962–4966

    CAS  Google Scholar 

  123. Shi W, Cao L, Zhang H, et al. Surface modification of two-dimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew Chem Int Ed, 2017, 56: 9704–9709

    CAS  Google Scholar 

  124. Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasons Sonochem, 2004, 11: 47–55

    CAS  Google Scholar 

  125. Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev, 2013, 42: 2555–2567

    CAS  Google Scholar 

  126. Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy, 2016, 1: 16184

    CAS  Google Scholar 

  127. Wang Y, Liu Y, Wang H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater, 2019, 2: 2063–2071

    CAS  Google Scholar 

  128. Hai G, Jia X, Zhang K, et al. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy, 2018, 44: 345–352

    CAS  Google Scholar 

  129. Ning Y, Lou X, Li C, et al. Ultrathin cobalt-based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage. Chem Eur J, 2017, 23: 15984–15990

    CAS  Google Scholar 

  130. Zhu D, Guo C, Liu J, et al. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem Commun, 2017, 53: 10906–10909

    CAS  Google Scholar 

  131. Cai M, Liu Q, Xue Z, et al. Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J Mater Chem A, 2020, 8: 190–195

    CAS  Google Scholar 

  132. Chen J, Zhuang P, Ge Y, et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv Funct Mater, 2019, 29: 1903875

    Google Scholar 

  133. Sun F, Wang G, Ding Y, et al. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater, 2018, 8: 1800584

    Google Scholar 

  134. Yang L, Zhu G, Wen H, et al. Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis. J Mater Chem A, 2019, 7: 8771–8776

    CAS  Google Scholar 

  135. Deng T, Lu Y, Zhang W, et al. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater, 2018, 8: 1702294

    Google Scholar 

  136. Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater, 2017, 29: 1606793

    Google Scholar 

  137. Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv Mater, 2018, 30: 1704303

    Google Scholar 

  138. Cho W, Lee HJ, Oh M. Growth-controlled formation of porous co-ordination polymer particles. J Am Chem Soc, 2008, 130: 16943–16946

    CAS  Google Scholar 

  139. Sakata Y, Furukawa S, Kondo M, et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science, 2013, 339: 193–196

    CAS  Google Scholar 

  140. He S, Chen Y, Zhang Z, et al. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem Sci, 2016, 7: 7101–7105

    CAS  Google Scholar 

  141. Pham MH, Vuong GT, Fontaine FG, et al. Rational synthesis of metal-organic framework nanocubes and nanosheets using selective modulators and their morphology-dependent gas-sorption properties. Cryst Growth Des, 2012, 12: 3091–3095

    CAS  Google Scholar 

  142. Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem Eur J, 2011, 17: 6643–6651

    CAS  Google Scholar 

  143. Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew Chem Int Ed, 2009, 48: 4739–4743

    CAS  Google Scholar 

  144. Nian P, Liu H, Zhang X. Bottom-up synthesis of 2D Co-based metal-organic framework nanosheets by an ammonia-assisted strategy for tuning the crystal morphology. CrystEngComm, 2019, 21: 3199–3208

    CAS  Google Scholar 

  145. Seoane B, Coronas J, Gascon I, et al. Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture? Chem Soc Rev, 2015, 44: 2421–2454

    CAS  Google Scholar 

  146. Zheng Z, Grünker R, Feng X. Synthetic two-dimensional materials: A new paradigm of membranes for ultimate separation. Adv Mater, 2016, 28: 6529–6545

    CAS  Google Scholar 

  147. Cheng Y, Wang X, Jia C, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J Membrane Sci, 2017, 539: 213–223

    CAS  Google Scholar 

  148. Kang Z, Peng Y, Hu Z, et al. Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture: A relationship study of filler morphology versus membrane performance. J Mater Chem A, 2015, 3: 20801–20810

    CAS  Google Scholar 

  149. Xue F, Kumar P, Xu W, et al. Direct synthesis of 7 nm-thick zinc(II)-benzimidazole-acetate metal-organic framework nanosheets. Chem Mater, 2017, 30: 69–73

    Google Scholar 

  150. Yang Y, Goh K, Wang R, et al. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem Commun, 2017, 53: 4254–4257

    CAS  Google Scholar 

  151. He T, Ni B, Zhang S, et al. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small, 2018, 14: 1703929

    Google Scholar 

  152. Hu Z, Mahdi EM, Peng Y, et al. Kinetically controlled synthesis of two-dimensional Zr/Hf metal-organic framework nanosheets via a modulated hydrothermal approach. J Mater Chem A, 2017, 5: 8954–8963

    CAS  Google Scholar 

  153. Lin Z, Thacker NC, Sawano T, et al. Metal-organic layers stabilize earth-abundant metal-terpyridine diradical complexes for catalytic C–H activation. Chem Sci, 2018, 9: 143–151

    CAS  Google Scholar 

  154. Yu Y, Wu XJ, Zhao M, et al. Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angew Chem Int Ed, 2017, 56: 578–581

    CAS  Google Scholar 

  155. Zhang S, Ye H, Hua J, et al. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1: 100015

    Google Scholar 

  156. Liu D, Ouyang T, Xiao R, et al. Anchoring CoII ions into a thiol-laced metal-organic framework for efficient visible-light-driven conversion of CO2 into CO. ChemSusChem, 2019, 12: 2166–2170

    CAS  Google Scholar 

  157. Cao LM, Lu D, Zhong DC, et al. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord Chem Rev, 2020, 407: 213156

    CAS  Google Scholar 

  158. Liu DC, Zhong DC, Lu TB. Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem, 2020, 2: 100034

    Google Scholar 

  159. Gong YN, Shao BZ, Mei JH, et al. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res, 2022, 15: 551–556

    CAS  Google Scholar 

  160. Wang J, Feng YX, Zhang M, et al. β-Cyclodextrin decorated CdS nanocrystals boosting the photocatalytic conversion of alcohols. CCS Chem, 2020, 2: 81–88

    CAS  Google Scholar 

  161. Zhang J, Zhong D, Lu T. Co(II)-based molecular complexes for photochemical CO2 reduction. Acta Physico Chim Sin, 2020, 0: 2008068–0

    Google Scholar 

  162. Deng JH, Luo J, Mao YL, et al. π−π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Sci Adv, 2020, 6: eaax9976

    CAS  Google Scholar 

  163. Liang Z, Zhao R, Qiu T, et al. Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1: 100001

    Google Scholar 

  164. Li X, Zhu QL. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2: 100033

    Google Scholar 

  165. Li Y, Jia B, Chen B, et al. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Trans, 2018, 47: 14679–14685

    CAS  Google Scholar 

  166. Li FL, Shao Q, Huang X, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed, 2018, 57: 1888–1892

    CAS  Google Scholar 

  167. Wang J, Gan L, Zhang W, et al. In situ formation of molecular Ni—Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci Adv, 2018, 4: eaap7970

    Google Scholar 

  168. Lu XF, Liao PQ, Wang JW, et al. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc, 2016, 138: 8336–8339

    CAS  Google Scholar 

  169. Xiao X, Zhang G, Xu Y, et al. A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A, 2019, 7: 17266–17271

    CAS  Google Scholar 

  170. Huang X, Zhang Y, Shen H, et al. N-doped carbon nanosheet networks with favorable active sites triggered by metal nanoparticles as bifunctional oxygen electrocatalysts. ACS Energy Lett, 2018, 3: 2914–2920

    CAS  Google Scholar 

  171. Nai J, Lu Y, Yu L, et al. Formation of Ni—Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv Mater, 2017, 29: 1703870

    Google Scholar 

  172. Hod I, Sampson MD, Deria P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal, 2015, 5: 6302–6309

    CAS  Google Scholar 

  173. Ye L, Liu J, Gao Y, et al. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J Mater Chem A, 2016, 4: 15320–15326

    CAS  Google Scholar 

  174. Wu JX, Yuan WW, Xu M, et al. Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2. Chem Commun, 2019, 55: 11634–11637

    CAS  Google Scholar 

  175. Zhu W, Zhang C, Li Q, et al. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl Catal B-Environ, 2018, 238: 339–345

    CAS  Google Scholar 

  176. Ren JT, Zheng YL, Yuan K, et al. Self-templated synthesis of Co3O4 hierarchical nanosheets from a metal-organic framework for efficient visible-light photocatalytic CO2 reduction. Nanoscale, 2020, 12: 755–762

    CAS  Google Scholar 

  177. Kreno LE, Leong K, Farha OK, et al. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125

    CAS  Google Scholar 

  178. Xu H, Gao J, Qian X, et al. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J Mater Chem A, 2016, 4: 10900–10905

    CAS  Google Scholar 

  179. Ning D, Liu Q, Wang Q, et al. Luminescent MOF nanosheets for enzyme assisted detection of H2O2 and glucose and activity assay of glucose oxidase. Sens Actuat B-Chem, 2019, 282: 443–448

    CAS  Google Scholar 

  180. He C, Lu K, Lin W. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J Am Chem Soc, 2014, 136: 12253–12256

    CAS  Google Scholar 

  181. Zhao Y, Jiang L, Shangguan L, et al. Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J Mater Chem A, 2018, 6: 2828–2833

    CAS  Google Scholar 

  182. Hai X, Li N, Wang K, et al. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Anal Chim Acta, 2018, 998: 60–66

    CAS  Google Scholar 

  183. He L, Duan F, Song Y, et al. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Mater, 2017, 4: 025098

    Google Scholar 

  184. Lu W, Wu X. Ni-MOF nanosheet arrays: Efficient non-noble-metal electrocatalysts for non-enzymatic monosaccharide sensing. New J Chem, 2018, 42: 3180–3183

    CAS  Google Scholar 

  185. Song WJ. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta, 2017, 170: 74–80

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2017YFA0700104), the National Natural Science Foundation of China (22071182, 21861001, 21931007 and 21790052), the 111 Project of China (D17003), and the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (2018KJ129).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang H investigated the relevant literature and wrote this manuscript. Zhong D and Lu T carefully reviewed and modified this manuscript. Zhang C and Dong B gave some valuable suggestions on revision. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Dichang Zhong  (钟地长) or Tongbu Lu  (鲁统部).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Huifeng Wang received her ME degree in 2020 from Guangxi Normal University. Currently, she is pursuing her PhD degree at Yangzhou University. Her research focuses on the rational design and synthesis of functional complexes for energy storage and conversion.

Dichang Zhong obtained his BS degree in 2003 from Gannan Normal University, MS degree in 2006 from Guangxi Normal University, and PhD degree in 2011 from Sun Yat-Sen University. Then, he joined the faculty at Gannan Normal University. He worked as a Japan Society for the Promotion of Science (JSPS) postdoctoral fellow at the National Institute of Advanced Industrial Science and Technology (AIST), Japan, for two years. In 2020, he moved to Tianjin University of Technology. His interests focus on the design and synthesis of molecular catalytic materials for energy storage and conversion.

Tongbu Lu obtained his BS degree in 1988 and his PhD degree in 1993 from Lanzhou University. After two years of a postdoctoral fellowship at Sun Yat-Sen University, he joined the faculty at the same university and became a professor in 2000. He worked as a postdoctoral fellow in F. Albert Cotton’s group at Texas A&M University in 1998 and 2002. In 2016, he moved to Tianjin University of Technology. His research interests focus on the study of artificial photosynthesis, including the design of homogeneous and heterogeneous catalysts for water splitting and CO2 reduction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, C., Dong, B. et al. Metal-organic layers: Preparation and applications. Sci. China Mater. 66, 839–858 (2023). https://doi.org/10.1007/s40843-022-2316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2316-y

Keywords

Navigation