Skip to main content
Log in

Giant low-field magnetocaloric effect of (Er,Y)Cr2Si2 compounds at ultra-low temperatures

Er-Y-Cr-Si化合物在极低温区的巨低场磁热效应

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Low-temperature and low-field magnetocaloric materials with high magnetocaloric effect (MCE) performance have important prospects in applications such as gas liquefaction. A series of polycrystalline Er1−xYxCr2Si2 (0 ≤ x ≤ 0.8) samples were successfully synthesized by arc melting, showing giant low-field MCE. For the sample with x = 0.1, the compound shows the best MCE performance, with the appropriate working temperature down to 2 K. Furthermore, the maximum value of magnetic entropy change ((−ΔSM)max) and adiabatic temperature change ((ΔTad)max) under the field change of 0–1 T are calculated to be 19.2 J kg−1 K−1 and 4.3 K correspondingly. The value of (−ΔSM)max is the largest ever reported for intermetallic MCE materials below 20 K. The characteristic of magnetic phase transition is verified to be of second order on basis of Arrott plots, mean field theory and rescaled universal −ΔSM curves. The physical mechanism indicates that the great enhancement of (−ΔSM)max as large as 15.9% due to 10% Y substitution originates from the larger saturation magnetic moments and the smaller saturated magnetic fields.

摘要

高性能低温低场磁热材料在气体液化等领域具有重要的应用前 景. 本团队通过真空电弧熔炼的方式成功合成了一系列多晶 Er1−xYxCr2Si2 (0 ≤ x ≤ 0.8)样品, 这些材料表现出巨大的低场磁热效应. 其中Cr含量为0.1的样品显示出最好的低场磁热性能以及接近2 K的合 适的工作温区. 更重要的是, 在0–1 T的磁场变化下, 该样品的最大磁熵 变峰值以及最大绝热温变峰值分别高达19.2 J kg−1 K−1和4.3 K. 其磁熵 变峰值为目前已报道的20 K以下温区合金类磁热材料的最大值. 通过 Arrott曲线, 平均场理论以及约化磁熵变曲线等手段, 证明了磁相变特 征为二级相变. 物理机理分析表明, 10%的Y替代导致高达15.9%的磁熵 变峰值增强的原因在于替代样品所具有的大饱和磁化强度以及小饱和 磁场.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moya X, Mathur ND. Caloric materials for cooling and heating. Science, 2020, 370: 797–803

    Article  CAS  Google Scholar 

  2. Hou H, Qian S, Takeuchi I. Materials, physics and systems for multi-caloric cooling. Nat Rev Mater, 2022, 7: 633–652

    Article  Google Scholar 

  3. Gottschall T, Gràcia-Condal A, Fries M, et al. A multicaloric cooling cycle that exploits thermal hysteresis. Nat Mater, 2018, 17: 929–934

    Article  CAS  Google Scholar 

  4. Pecharsky VK, Gschneidner K.-A.J., Pecharsky AO, et al. Thermodynamics of the magnetocaloric effect. Phys Rev B, 2001, 64: 144406

    Article  Google Scholar 

  5. Pecharsky VK, Gschneidner Jr KA. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett, 1997, 78: 4494–4497

    Article  CAS  Google Scholar 

  6. Hu F, Shen B, Sun J, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett, 2001, 78: 3675–3677

    Article  CAS  Google Scholar 

  7. Cong D, Xiong W, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys Rev Lett, 2019, 122: 255703

    Article  CAS  Google Scholar 

  8. Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater, 2005, 4: 450–454

    Article  CAS  Google Scholar 

  9. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−xSbx. Appl Phys Lett, 2001, 79: 3302–3304

    Article  CAS  Google Scholar 

  10. Tegus O, Brück E, Buschow KHJ, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002, 415: 150–152

    Article  CAS  Google Scholar 

  11. Giguere A, Foldeaki M, Schnelle W, et al. Metamagnetic transition and magnetocaloric effect in ErCo2. J Phys-Condens Matter, 1999, 11: 6969–6981

    Article  CAS  Google Scholar 

  12. Castro PB, Terashima K, Yamamoto TD, et al. Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG Asia Mater, 2020, 12: 35

    Article  CAS  Google Scholar 

  13. Li DX, Yamamura T, Nimori S, et al. Large reversible magnetocaloric effect in ferromagnetic semiconductor EuS. Solid State Commun, 2014, 193: 6–10

    Article  CAS  Google Scholar 

  14. Guillou F, Pathak AK, Paudyal D, et al. Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect. Nat Commun, 2018, 9: 2925

    Article  CAS  Google Scholar 

  15. Xu JW, Zheng XQ, Yang SX, et al. Giant low field magnetocaloric effect in TmCoSi and TmCuSi compounds. J Alloys Compd, 2020, 843: 155930

    Article  CAS  Google Scholar 

  16. Zheng XQ, Zhang B, Wu H, et al. Large magnetocaloric effect of HoxEr1−xNi (0 ≤ x ≤ 1) compounds. J Appl Phys, 2016, 120: 163907

    Article  Google Scholar 

  17. Li L, Nishimura K, Hutchison WD, et al. Giant reversible magnetocaloric effect in ErMn2Si2 compound with a second order magnetic phase transition. Appl Phys Lett, 2012, 100: 152403

    Article  Google Scholar 

  18. Zhang Y, Zhu J, Li S, et al. Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Sci China Mater, 2022, 65: 1345–1352

    Article  CAS  Google Scholar 

  19. Guo D, Moreno-Ramírez LM, Law JY, et al. Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or Er) compounds. Sci China Mater, 2022, 66: 249

    Article  Google Scholar 

  20. Zhang Y, Li S, Hu L, et al. Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Mater Today Phys, 2022, 27: 100786

    Article  CAS  Google Scholar 

  21. Li L, Yan M. Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J Mater Sci Tech, 2023, 136: 1–12

    Article  Google Scholar 

  22. Xu P, Hu L, Zhang Z, et al. Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds. Acta Mater, 2022, 236: 118114

    Article  CAS  Google Scholar 

  23. Zhang Y, Tian Y, Zhang Z, et al. Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater, 2022, 226: 117669

    Article  CAS  Google Scholar 

  24. Lionte S, Risser M, Muller C. A 15 kW magnetocaloric proof-of-concept unit: Initial development and first experimental results. Int J Refrigeration, 2021, 122: 256–265

    Article  Google Scholar 

  25. Maiorino A, Mauro A, Del Duca MG, et al. Looking for energy losses of a rotary permanent magnet magnetic refrigerator to optimize its performances. Energies, 2019, 12: 4388

    Article  CAS  Google Scholar 

  26. Shen J, Gao X, Li K, et al. Experimental research on a 4 K hybrid refrigerator combining GM gas refrigeration effect with magnetic refrigeration effect. Cryogenics, 2019, 99: 99–104

    Article  CAS  Google Scholar 

  27. Law JY, Franco V, Moreno-Ramírez LM, et al. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun, 2018, 9: 2680

    Article  Google Scholar 

  28. Yakinthos JK. Crystal and magnetic structures of TmFe2Si2 and TmNi2Ge2 compounds. Influence of the d-metal charge on the anisotropy direction of the RT2X2 (R = rare earth, T = 3d or 4d metal and X = Si, Ge) compounds. J Magn Magn Mater, 1991, 99: 123–132

    Article  CAS  Google Scholar 

  29. Moze O, Hofmann M, Buschow KHJ. Chromium sublattice magnetic ordering in a compound of the ThCr2Si2 type structure: HoCr2Si2. J Alloys Compd, 2000, 308: 60–63

    Article  CAS  Google Scholar 

  30. Moze O, Rosenkranz S, Osborn R, et al. Magnetic excitations in tetragonal HoCr2Si2. J Appl Phys, 2000, 87: 6283–6285

    Article  CAS  Google Scholar 

  31. Saensunon B, Stewart GA, Nishimura K. Crystal field interaction at the Tm3+ site in TmCr2Si2. J Alloys Compd, 2009, 476: 49–53

    Article  CAS  Google Scholar 

  32. Janatová M, Vejpravová JP, Diviš M. Magnetic properties of RCr2Si2 compounds (R = Tb, Er). J Magn Magn Mater, 2010, 322: 1140–1142

    Article  Google Scholar 

  33. Li L, Hu G, Umehara I, et al. Magnetic properties and magnetocaloric effect of GdCr2Si2 compound under hydrostatic pressure. J Alloys Compd, 2013, 575: 1–4

    Article  CAS  Google Scholar 

  34. Moze O, Hofmann M, Cadogan JM, et al. Magnetic order in RCr22Si2 intermetallics. Eur Phys J B - Condensed Matter, 2003, 36: 511–518

    CAS  Google Scholar 

  35. Li L, Hutchison WD, Huo D, et al. Low-field giant reversible magnetocaloric effect in intermetallic compound ErCr2Si2. Scripta Mater, 2012, 67: 237–240

    Article  CAS  Google Scholar 

  36. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystlogr, 2001, 34: 210–213

    Article  CAS  Google Scholar 

  37. Cui J, Huang Q, Toby BH. Magnetic structure refinement with neutron powder diffraction data using GSAS: A tutorial. Powder Diffr, 2012, 21: 71–79

    Article  Google Scholar 

  38. Yang SX, Zheng XQ, Yang WY, et al. Tunable magnetic properties and magnetocaloric effect of TmGa by Ho substitution. Phys Rev B, 2020, 102: 174441

    Article  CAS  Google Scholar 

  39. Green RW, Legvold S, Spedding FH. Magnetization and electrical resistivity of erbium single crystals. Phys Rev, 1961, 122: 827–830

    Article  CAS  Google Scholar 

  40. Brommer PE. A generalization of the Inoue-Shimizu model. Physica B-Condensed Matter, 1989, 154: 197–202

    Article  CAS  Google Scholar 

  41. Liu XB, Ryan DH, Altounian Z. The order of magnetic phase transition in La(Fe1−xCox)114Si1.6 compounds. J Magn Magn Mater, 2004, 270: 305–311

    Article  CAS  Google Scholar 

  42. Mo ZJ, Shen J, Yan LQ, et al. Low field induced giant magnetocaloric effect in TmGa compound. Appl Phys Lett, 2013, 103: 052409

    Article  Google Scholar 

  43. Mo ZJ, Shen J, Yan LQ, et al. Low-field induced giant magnetocaloric effect in TmCuAl compound. Appl Phys Lett, 2013, 102: 192407

    Article  Google Scholar 

  44. Li L, Yuan Y, Zhang Y, et al. Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Appl Phys Lett, 2015, 107: 132401

    Article  Google Scholar 

  45. Zhang Y, Wilde G. Magnetic properties and magnetocaloric effect in quaternary boroncarbides compound ErNiBC. Physica B-Condensed Matter, 2015, 472: 56–59

    Article  CAS  Google Scholar 

  46. Li L, Saensunon B, Hutchison WD, et al. Magnetic properties and large reversible magnetocaloric effect in TmMn2Si2. J Alloys Compd, 2014, 582: 670–673

    Article  CAS  Google Scholar 

  47. Zhang H, Xing C, Zhou H, et al. Giant anisotropic magnetocaloric effect by coherent orientation of crystallographic texture and rare-earth ion moments in HoNiSi ploycrystal. Acta Mater, 2020, 193: 210–220

    Article  CAS  Google Scholar 

  48. Bebenin NG, Zainullina RI, Ustinov VV, et al. Magnetic properties of La0.7−xPrxCa03MnO3 single crystals: When is Banerjee criterion applicable?. J Magn Magn Mater, 2014, 354: 76–80

    Article  CAS  Google Scholar 

  49. Franco V, Conde A, Pecharsky VK, et al. Field dependence of the magnetocaloric effect in Gd and (Er1−xDyx)Al2: Does a universal curve exist?. Europhys Lett, 2007, 79: 47009

    Article  Google Scholar 

  50. Oesterreicher H, Parker FT. Magnetic cooling near curie temperatures above 300 K. J Appl Phys, 1984, 55: 4334–4338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFB3501202 and 2019YFB2005800), the Science Center of the National Science Foundation of China (52088101), the National Natural Science Foundation of China (51871019, 52171170, 52130103, 51961145305, and 51971026), and the 111 Project (B170003).

Author information

Authors and Affiliations

Authors

Contributions

Zheng X designed the idea of this research. Xi L, Liu C, Wang D, Xu J, Yang S, Gao Y and Jin B performed the experiments including sample synthesis, magnetic measurements and XRD analysis. Xu J and Yin W performed the NPD experiments. Zhu M and Xu W performed the TEM experiments. Zheng X performed the data analysis and prepared the original manuscript. All the other authors contributed to the discussion.

Corresponding authors

Correspondence to Xinqi Zheng  (郑新奇) or Shouguo Wang  (王守国).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Lei Xi graduated from the School of Materials Science and Engneering, University of Science and Technoloy Beijing (USTB), and currently he is a PhD student at the School of Materials Science and Engineering, Anhui University (AHU). His research interests focus on magnetic properties and the magnetocaloric effect of rare-earth-based compounds.

Xinqi Zheng recieved his PhD degree from the Institute of Physics, Chinese Academy of Sciences. During his PhD study, he carried out research on neutron powder diffraction of magnetic materials as a guest researcher. Currently, he is an associate professor at the School of Materials Science and Engineering, USTB. His research interest focuses on rare-earth-based low-temperature magnetic refrigerant materials and abnormal magnetic thermal expansion materials.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, L., Zheng, X., Gao, Y. et al. Giant low-field magnetocaloric effect of (Er,Y)Cr2Si2 compounds at ultra-low temperatures. Sci. China Mater. 66, 2039–2050 (2023). https://doi.org/10.1007/s40843-022-2312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2312-0

Keywords

Navigation