Skip to main content
Log in

Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate

反钙钛矿结构氮化铜纳米片实现高效电催化甲醇氧化转化为甲酸盐

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu3N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu3N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu3N core facilitates the electron transport inside the catalyst during the electrocatalytic process. This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.

摘要

钙钛矿氧化物具有灵活的组成和电子结构, 在电催化水氧化反应中具有很大的应用潜力. 然而, 钙钛矿氧化物在电催化有机小分子转化中的应用研究较少, 这可能是由于其导电性差, 表面重构产生活性物种所需的能垒高. 在本文中, 我们报道了具有典型反钙钛矿结构的氮化铜纳米片作为甲醇选择性转化为甲酸盐的电催化剂, 其形成甲酸盐的法拉第效率超过90%. 原位电化学质谱和原位红外反射吸收光谱进一步证实了制备的氮化铜样品在较宽的电位范围内具有较高的甲酸盐选择性. 此外, 高分辨率透射电镜、X射线吸收光谱和原位拉曼光谱表明, 该催化剂在电催化过程中发生表面重构形成了氧化态铜物种壳, 从而提升了其整体甲醇氧化性能, 而原始的氮化铜核则利于在催化剂内部的电子传递. 本研究不仅为甲醇的高选择性转化提供了一种有意义的方案, 而且为有机小分子的电化学转化提供了一种新型的非氧化物钙钛矿材料模型.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko YJ, Kim JY, Lee WH, et al. Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nat Commun, 2022, 13: 2205

    Article  CAS  Google Scholar 

  2. Wang Z, Zu X, Li X, et al. Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites. Nano Res, 2022, 15: 6999–7007

    Article  CAS  Google Scholar 

  3. Liu Q, Wu L, Gülak S, et al. Towards a sustainable synthesis of formate salts: Combined catalytic methanol dehydrogenation and bicarbonate hydrogenation. Angew Chem Int Ed, 2014, 53: 7085–7088

    Article  CAS  Google Scholar 

  4. Olah GA, Prakash GKS, Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc, 2011, 133: 12881–12898

    Article  CAS  Google Scholar 

  5. Wu X, Zeng Y, Liu H, et al. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res, 2021, 14: 4584–4590

    Article  CAS  Google Scholar 

  6. Kuwahara Y, Mihogi T, Hamahara K, et al. A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO2 hydrogenation to methanol. Chem Sci, 2021, 12: 9902–9915

    Article  CAS  Google Scholar 

  7. Li Y, Wei X, Chen L, et al. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat Commun, 2019, 10: 5335

    Article  Google Scholar 

  8. Wei X, Li Y, Chen L, et al. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew Chem Int Ed, 2021, 60: 3148–3155

    Article  CAS  Google Scholar 

  9. Chu K, Qin J, Zhu H, et al. High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Sci China Mater, 2022, 65: 2711–2720

    Article  CAS  Google Scholar 

  10. Hwang J, Rao RR, Giordano L, et al. Perovskites in catalysis and electrocatalysis. Science, 2017, 358: 751–756

    Article  CAS  Google Scholar 

  11. Zhu Y, Chen G, Zhong Y, et al. A surface-modified antiperovskite as an electrocatalyst for water oxidation. Nat Commun, 2018, 9: 2326

    Article  Google Scholar 

  12. Xu X, Chen Y, Zhou W, et al. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv Mater, 2016, 28: 6442–6448

    Article  CAS  Google Scholar 

  13. Kuai X, Yang G, Chen Y, et al. Boosting the activity of BaCo0.4Fe0.4−Zr0.1Y0.1O3−δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency. Adv Energy Mater, 2019, 9: 1902384

    Article  CAS  Google Scholar 

  14. Kim J, Yin X, Tsao KC, et al. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J Am Chem Soc, 2014, 136: 14646–14649

    Article  CAS  Google Scholar 

  15. Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater, 2017, 16: 925–931

    Article  CAS  Google Scholar 

  16. Jiang H, He Q, Li X, et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv Mater, 2019, 31: 1805127

    Article  Google Scholar 

  17. Selvam NCS, Du L, Xia BY, et al. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities. Adv Funct Mater, 2021, 31: 2008190

    Article  CAS  Google Scholar 

  18. Beall CE, Fabbri E, Schmidt TJ. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: The underlying mechanism. ACS Catal, 2021, 11: 3094–3114

    Article  CAS  Google Scholar 

  19. Liu D, Zhou P, Bai H, et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small, 2021, 17: 2101605

    Article  CAS  Google Scholar 

  20. Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc, 2015, 137: 4119–4125

    Article  CAS  Google Scholar 

  21. Ni W, Krammer A, Hsu CS, et al. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew Chem Int Ed, 2019, 58: 7445–7449

    Article  CAS  Google Scholar 

  22. Hu S, Wang S, Feng C, et al. Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation. ACS Sustain Chem Eng, 2020, 8: 7414–7422

    Article  CAS  Google Scholar 

  23. Meng FL, Zhong HX, Zhang Q, et al. Integrated Cu3N porous nanowire array electrode for high-performance supercapacitors. J Mater Chem A, 2017, 5: 18972–18976

    Article  CAS  Google Scholar 

  24. Wu H, Chen W. Copper nitride nanocubes: Size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J Am Chem Soc, 2011, 133: 15236–15239

    Article  CAS  Google Scholar 

  25. Liu S, Fan R, Zhao Y, et al. Assembly of Cu−In−Sn−Se quantum dot-sensitized TiO2 films for efficient quantum dot-sensitized solar cell application. Mater Today Energy, 2021, 21: 100798

    Article  CAS  Google Scholar 

  26. Sun Y, Li X, Zhang T, et al. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew Chem Int Ed, 2021, 60: 21575–21582

    Article  CAS  Google Scholar 

  27. Sun Y, Mao K, Shen Q, et al. Surface electronic structure modulation of cobalt nitride nanowire arrays via selenium deposition for efficient hydrogen evolution. Adv Funct Mater, 2022, 32: 2109792

    Article  CAS  Google Scholar 

  28. Doyle RL, Lyons MEG. Kinetics and mechanistic aspects of the oxygen evolution reaction at hydrous iron oxide films in base. J Electrochem Soc, 2013, 160: H142–H154

    Article  CAS  Google Scholar 

  29. Xie C, Chen W, Du S, et al. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy, 2020, 71: 104653

    Article  CAS  Google Scholar 

  30. Gu K, Wang D, Xie C, et al. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew Chem Int Ed, 2021, 60: 20253–20258

    Article  CAS  Google Scholar 

  31. Chen X, Wang Q, Cheng Y, et al. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv Funct Mater, 2022, 32: 2112674

    Article  CAS  Google Scholar 

  32. Li J, Liu HX, Gou W, et al. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ Sci, 2019, 12: 2298–2304

    Article  CAS  Google Scholar 

  33. Xu K, Cheng H, Liu L, et al. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett, 2017, 17: 578–583

    Article  CAS  Google Scholar 

  34. Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed, 2015, 54: 14710–14714

    Article  CAS  Google Scholar 

  35. Ebaid M, Jiang K, Zhang Z, et al. Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2. Chem Mater, 2020, 32: 3304–3311

    Article  CAS  Google Scholar 

  36. Wu H, Li H, Zhao X, et al. Highly doped and exposed Cu(I)−N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ Sci, 2016, 9: 3736–3745

    Article  CAS  Google Scholar 

  37. Panda C, Menezes PW, Zheng M, et al. In situ formation of nanostructured core-shell Cu3N−CuO to promote alkaline water electrolysis. ACS Energy Lett, 2019, 4: 747–754

    Article  CAS  Google Scholar 

  38. Yu W, Zhao J, Jin C. Simultaneous softening of Cu3N phonon modes along the T2 line under pressure: A first-principles calculation. Phys Rev B, 2005, 72: 214116

    Article  Google Scholar 

  39. Debbichi L, Marco de Lucas MC, Pierson JF, et al. Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C, 2012, 116: 10232–10237

    Article  CAS  Google Scholar 

  40. Li J, Wei R, Wang X, et al. Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide. Angew Chem Int Ed, 2020, 59: 20826–20830

    Article  CAS  Google Scholar 

  41. Yang Q, Zhang C, Dong B, et al. Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe−WOx electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA cm−2. Appl Catal B-Environ, 2021, 296: 120359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Table XAFS-500 (Specreation Instruments Co., Ltd) for the provision of instruments. This work was supported by the Natural Science Foundation of Anhui Province (2208085Y03) and the Start-up Grant from Anhui University. The authors also acknowledge the High-performance Computing Platform of Anhui University for providing computing resources.

Author information

Authors and Affiliations

Authors

Contributions

Xu K came up with the topic and directed the project. Zhao L, Sun Q and Zhong Y collected the data. Zhao L, Li M, Shen P and Lin Y analyzed the data. Zhao L wrote the original draft. All authors contributed to the general discussion.

Corresponding author

Correspondence to Kun Xu  (徐坤).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Lei Zhao received his BE and MS degrees at the University of Jinan. He is currently a PhD student at Anhui University. His research focuses on the design of inorganic nanomaterials for electrocatalytic conversion of small organic molecules.

Kun Xu received his PhD degree from the University of Science and Technology of China in 2015 (supervised by Prof. Changzheng Wu and Prof. Yi Xie). He carried out postdoctoral research at Nanyang Technological University (June 2017 to June 2020 with Prof. Hong Jin Fan). He is currently a professor at Anhui University. His main research interest focuses on metallic nanomaterials for catalysis.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Sun, Q., Li, M. et al. Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate. Sci. China Mater. 66, 1820–1828 (2023). https://doi.org/10.1007/s40843-022-2311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2311-y

Keywords

Navigation