Skip to main content
Log in

An in situ reduction strategy toward dendrite-free Zn anodes

一种原位还原策略用于构筑无枝晶锌负极

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Combining three-dimensional (3D) current collectors and zincophilic species is considered an efficient way to construct highly stable Zn metal anodes. Unfortunately, costly and complex preparation processes impede their practical application. Herein, a dendrite-free 3D Zn metal composite anode (Zn@ACC-600@Cu2+) has been rationally designed by plating Zn on a Cu2+-coordinated carbon cloth current collector (ACC-600@Cu2+). In particular, during the Zn nucleation process, Cu2+ is reduced in situ to metallic Cu and then forms a zincophilic Cu-Zn alloy with further Zn deposition. Density functional theory calculations and experimental observations reveal that the Cu-Zn alloy interface can not only act as a zincophilic deposition site for Zn ions but also enhance the conductivity to homogenize the electric field and Zn2+ flux. Thus, the ACC-600@Cu2+ host enables the high reversibility of Zn plating/stripping and long cycling stability for more than 410 h with a low-voltage hysteresis of 15.8 mV. As a proof-of-concept demonstration, the assembled Zn@ACC-600@Cu2+∥MnO2 full batteries show a decent rate capability and a substantially enhanced specific capacity of 110 mA h g−1 compared with the pristine carbon cloth-based full cells. This in situ reduction strategy establishes a facile method for designing 3D Zn metal composite anodes that advances the development of dendrite-free and durable Zn metal batteries.

摘要

结合了三维结构和亲锌物种的集流体构筑策略被认为是构建高稳定锌金属负极的有效方法. 然而, 高昂的成本和复杂的制备工艺阻碍了其实际应用. 本文通过在有均匀Cu{su2+}锚定的碳布集流体(ACC600@Cu{su2+})上沉积锌, 合理设计了一种稳定的三维锌金属复合阳极(Zn@ACC-600@Cu{su2+}). 在锌成核过程中, Cu{su2+}原位还原为金属Cu, 然后随着锌的进一步沉积, 碳布表面逐渐形成均匀的亲锌的Cu-Zn合金界面层. 密度泛函理论计算和实验观察表明, Cu-Zn合金界面不仅可以作为锌离子的亲锌沉积点, 而且可以提高导电率, 使电场和锌离子通量均匀化. 因此, ACC-600@Cu{su2+}集流体可以实现高的镀锌/剥离可逆性, 并在15.8 mV的极化电压下稳定循环410 h以上. 作为概念验证, 我们组装的Zn@ACC-600@Cu{su2+}∥MnO 2 全电池具有良好的电池倍率性能, 与原始碳布相比, 其比容量显著提高至110 mA h g{su−1}. 本文提出的原位还原策略为三维锌金属复合负极的设计提供了一种简便且低成本的方法, 促进了无枝晶和高稳定锌金属电池的发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo Z, Qiu X, Liu C, et al. Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79: 105507

    Article  CAS  Google Scholar 

  2. Yuan L, Hao J, Kao CC, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci, 2021, 14: 5669–5689

    Article  CAS  Google Scholar 

  3. Chao D, Qiao SZ. Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte?. Joule, 2020, 4: 1846–1851

    Article  Google Scholar 

  4. Lu W, Zhang C, Zhang H, et al. Anode for zinc-based batteries: Challenges, strategies, and prospects. ACS Energy Lett, 2021, 6: 2765–2785

    Article  CAS  Google Scholar 

  5. Yi Z, Chen G, Hou F, et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater, 2021, 11: 2003065

    Article  CAS  Google Scholar 

  6. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule, 2020, 4: 771–799

    Article  CAS  Google Scholar 

  7. Gao Y, Tang Z, Chen X, et al. Magnetically accelerated thermal energy storage within Fe3O4-anchored MXene-based phase change materials. Aggregate, 2022, doi: https://doi.org/10.1002/agt2.248

  8. Cai Z, Ou Y, Zhang B, et al. A replacement reaction enabled inter-digitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mA h cm−2. J Am Chem Soc, 2021, 143: 3143–3152

    Article  CAS  Google Scholar 

  9. Zhou S, Wang Y, Lu H, et al. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv Funct Mater, 2021, 31: 2104361

    Article  CAS  Google Scholar 

  10. Pei Z. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res Energy, 2022, 1: e9120023

    Article  Google Scholar 

  11. Qi K, Zhu W, Zhang X, et al. Enamel-like layer of nanohydroxyapatite stabilizes Zn metal anodes by ion exchange adsorption and electrolyte pH regulation. ACS Nano, 2022, 16: 9461–9471

    Article  CAS  Google Scholar 

  12. Cai Z, Wang J, Lu Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew Chem Int Ed, 2022, 61: e202116560

    Article  CAS  Google Scholar 

  13. Wang M, Meng Y, Li K, et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience, 2022, 2: 509–517

    Article  Google Scholar 

  14. Li M, He Q, Li Z, et al. A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv Energy Mater, 2019, 9: 1901469

    Article  Google Scholar 

  15. Wang J, Zhang B, Cai Z, et al. Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci Bull, 2022, 67: 716–724

    Article  CAS  Google Scholar 

  16. Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed, 2021, 60: 18247–18255

    Article  CAS  Google Scholar 

  17. Jiang L, Dong D, Lu YC. Design strategies for low temperature aqueous electrolytes. Nano Res Energy, 2022, 1: e9120003

    Article  Google Scholar 

  18. Shen Z, Luo L, Li C, et al. Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv Energy Mater, 2021, 11: 2100214

    Article  CAS  Google Scholar 

  19. Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater, 2022, 34: 2110047

    Article  CAS  Google Scholar 

  20. Parker JF, Chervin CN, Pala IR, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, 2017, 356: 415–418

    Article  CAS  Google Scholar 

  21. Zeng L, He H, Chen H, et al. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv Energy Mater, 2022, 12: 2103708

    Article  CAS  Google Scholar 

  22. Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv Mater, 2022, 34: 2200342

    Article  CAS  Google Scholar 

  23. Wang L, Fan G, Liu J, et al. Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chin Chem Lett, 2021, 32: 1095–1100

    Article  CAS  Google Scholar 

  24. Chen T, Wang Y, Yang Y, et al. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater, 2021, 31: 2101607

    Article  CAS  Google Scholar 

  25. Xue P, Guo C, Wang N, et al. Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn-metal composite anodes. Adv Funct Mater, 2021, 31: 2106417

    Article  CAS  Google Scholar 

  26. Yin Y, Wang S, Zhang Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv Mater, 2020, 32: 1906803

    Article  CAS  Google Scholar 

  27. Xu Z, Jin S, Zhang N, et al. Efficient Zn metal anode enabled by O,N-codoped carbon microflowers. Nano Lett, 2022, 22: 1350–1357

    Article  CAS  Google Scholar 

  28. Cai Z, Ou Y, Wang J, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater, 2020, 27: 205–211

    Article  Google Scholar 

  29. Zhang Q, Luan J, Huang X, et al. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small, 2020, 16: 2000929

    Article  CAS  Google Scholar 

  30. Hu Q, Han Z, Wang X, et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew Chem Int Ed, 2020, 59: 19054–19059

    Article  CAS  Google Scholar 

  31. Gu YJ, Wen W, Wu JM. Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J Mater Chem A, 2018, 6: 21078–21086

    Article  CAS  Google Scholar 

  32. Zong L, Fan K, Wu W, et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv Funct Mater, 2021, 31: 2104864

    Article  CAS  Google Scholar 

  33. Wu M, Zhang X, Zhao Y, et al. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat Nanotechnol, 2022, 17: 629–636

    Article  CAS  Google Scholar 

  34. Yue L, Qi Y, Niu Y, et al. Low-barrier, dendrite-free, and stable Na plating/stripping enabled by gradient sodiophilic carbon skeleton. Adv Energy Mater, 2021, 11: 2102497

    Article  CAS  Google Scholar 

  35. Li J, Zhang J, Yu L, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Storage Mater, 2021, 42: 705–714

    Article  Google Scholar 

  36. Qiu M, Jia H, Lan C, et al. An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering. Energy Storage Mater, 2022, 45: 1175–1182

    Article  Google Scholar 

  37. Lu H, Jin Q, Jiang X, et al. Vertical crystal plane matching between AgZn3 (002) and Zn (002) achieving a dendrite-free zinc anode. Small, 2022, 18: 2200131

    Article  CAS  Google Scholar 

  38. Ren D, Gao J, Pan L, et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew Chem Int Ed, 2019, 58: 15036–15040

    Article  CAS  Google Scholar 

  39. Chu Y, Zhang S, Wu S, et al. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ Sci, 2021, 14: 3609–3620

    Article  CAS  Google Scholar 

  40. Sun PX, Cao Z, Zeng YX, et al. Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew Chem Int Ed, 2022, 61: e202115649

    CAS  Google Scholar 

  41. Yang JL, Yang P, Yan W, et al. 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Mater, 2022, 51: 259–265

    Article  Google Scholar 

  42. Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXe-ne@Zn paper for dendrite-free aqueous zinc metal batteries and non-aqueous lithium metal batteries. ACS Nano, 2019, 13: 11676–11685

    Article  CAS  Google Scholar 

  43. Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater, 2021, 31: 2103922

    Article  CAS  Google Scholar 

  44. Li Y, Tan Z, Liang Y, et al. Amine-functionalized carbon cloth host for dendrite-free Zn metal anodes. ACS Appl Energy Mater, 2021, 4: 4482–4488

    Article  CAS  Google Scholar 

  45. Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 2019, 3: 1289–1300

    Article  CAS  Google Scholar 

  46. Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater, 2019, 31: 1903675

    Article  Google Scholar 

  47. Qian S, Xing C, Zheng M, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv Energy Mater, 2022, 12: 2103480

    Article  CAS  Google Scholar 

  48. Li S, Fu J, Miao G, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater, 2021, 33: 2008424

    Article  CAS  Google Scholar 

  49. Liang Y, Wang Y, Mi H, et al. Functionalized carbon nanofiber inter-layer towards dendrite-free, Zn-ion batteries. Chem Eng J, 2021, 425: 131862

    Article  CAS  Google Scholar 

  50. Cao P, Zhou X, Wei A, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv Funct Mater, 2021, 31: 2100398

    Article  CAS  Google Scholar 

  51. Guo X, Zhang Z, Li J, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett, 2021, 6: 395–403

    Article  CAS  Google Scholar 

  52. Liu H, Wang JG, Hua W, et al. Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase. Energy Environ Sci, 2022, 15: 1872–1881

    Article  CAS  Google Scholar 

  53. Yang H, Zhou W, Chen D, et al. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: A Mn-based competitive capacity evolution protocol. Energy Environ Sci, 2022, 15: 1106–1118

    Article  CAS  Google Scholar 

  54. Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun, 2017, 8: 405

    Article  CAS  Google Scholar 

  55. Fu Y, Wei Q, Zhang G, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater, 2018, 8: 1801445

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001236), the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (19IRTSTHN022), and Zhengzhou University.

Author information

Authors and Affiliations

Authors

Contributions

Zhou M performed the experiments, analyzed the data and wrote the manuscript with support from Wu Z and Wang R. Sun G and Zang SQ conceived the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Guoqiang Sun  (孙国强) or Shuang-Quan Zang  (臧双全).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Mengqi Zhou received his BSc degree from Huanggang Normal University. He is currently a Master’s degree student at Zhengzhou University. His research interest mainly focuses on Zn anodes and current collectors of high-performance aqueous zinc-ion batteries.

Guoqiang Sun received his PhD degree from Beijing Institute of Technology. He is currently a lecturer at Zhengzhou University. His research interest focuses on the construction of anode materials for high-performance aqueous zinc-ion batteries.

Shuang-Quan Zang received his PhD degree in chemistry from Nanjing University in 2006. After postdoctoral research at The Chinese University of Hong Kong, he joined the College of Chemistry, Zhengzhou University. He is serving as the dean of the College of Chemistry and Green Catalysis Center, Zhengzhou University. His current scientific interests focus on atomically precise metal clusters, cluster-assembled materials, and functional metal-organic frameworks.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wu, Z., Wang, R. et al. An in situ reduction strategy toward dendrite-free Zn anodes. Sci. China Mater. 66, 1757–1766 (2023). https://doi.org/10.1007/s40843-022-2308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2308-4

Keywords

Navigation