Skip to main content
Log in

Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction

通过锚定钯纳米颗粒在CsPbBr3钙钛矿纳米晶体上从而增强光催化CO2还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Recently, all-inorganic cesium lead halide (CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) have been extensively investigated for photocatalytic carbon dioxide (CO2) reduction reaction (CO2RR). However, because the pristine CsPbX3 NCs suffer from severe radiative recombination, it is imperative to elaborately design heterostructures to separate electron-hole pairs for achieving efficient CO2RR. Herein, palladium (Pd) nanoparticles (NPs) are anchored on CsPbBr3 NCs by a photo-assisted approach for the first time. The as-prepared CsPbBr3@Pd NCs not only build Schottky junctions at the CsPbBr3/Pd interfaces that promote the carrier separation and suppress the radiative recombination, but also exhibit lower energy barriers for photocatalytic CO2RR than pristine CsPbBr3 NCs according to the density functional theory calculations. The electron consumption rate reaches a striking peak of 46.2 µmol g−1 h−1 by using CsPbBr3@Pd NCs as photocatalysts for CO2RR, which is 4.8-fold of the counterpart of pristine CsPbBr3 NCs. This work not only presents a photo-assisted strategy for anchoring Pd NPs on CsPbBr3 NCs, but also demonstrates the great potential of using CsPbBr3@Pd NCs for photocatalytic CO2RR.

摘要

最近, 全无机铯铅溴(CsPbX3 (X = Cl, Br, I))钙钛矿纳米晶体被广泛应用于光催化CO2还原(CO2RR)领域. 但是, 由于纯CsPbX3纳米晶体内部载流子辐射复合严重, 所以精心设计基于CsPbX3纳米晶体的异质结构对于分离载流子和实现高效的CO2RR是非常重要的. 本文中, 我们介绍了利用光辅助的方法将Pd纳米颗粒锚定在CsPbX3纳米晶体上. 利用此方法所制备的CsPbBr3@Pd纳米晶体通过在CsPbBr3/Pd界面处构建肖特基结从而促进了载流子的分离并抑制了辐射复合. 第一性原理计算表明: 在CO2RR过程中, CsPbBr3@Pd纳米晶体比纯CsPbX3纳米晶体具有更低的能量势垒. 当CsPbBr3@Pd纳米晶体被用作CO2RR催化剂时, 电子消耗速率高达46.2 µmol g−1 h−1, 是纯CsPbX3纳米晶体作为光催化剂时电子消耗速率的4.8倍. 这项工作不仅介绍了一种利用光辅助将钯纳米颗粒锚定在CsPbX3纳米晶体上的方法, 而且还证明了CsPbBr3@Pd纳米晶体在光催化CO2还原领域的巨大潜能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575: 87–97

    Article  CAS  Google Scholar 

  2. Nguyen VH, Nguyen BS, Jin Z, et al. Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J, 2020, 402: 126184

    Article  CAS  Google Scholar 

  3. Zhang B, Sun L. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem Soc Rev, 2019, 48: 2216–2264

    Article  CAS  Google Scholar 

  4. Hou J, Cao S, Wu Y, et al. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30: 59–68

    Article  CAS  Google Scholar 

  5. Li P, Zhou Y, Zhao Z, et al. Hexahedron prism-anchored octahedronal CeO2: Crystal facet-based homojunction promoting efficient solar fuel synthesis. J Am Chem Soc, 2015, 137: 9547–9550

    Article  CAS  Google Scholar 

  6. Vu NN, Kaliaguine S, Do TO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv Funct Mater, 2019, 29: 1901825

    Article  Google Scholar 

  7. Xiong X, Zhao Y, Shi R, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci Bull, 2020, 65: 987–994

    Article  CAS  Google Scholar 

  8. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed, 2013, 52: 7372–7408

    Article  CAS  Google Scholar 

  9. Wang Y, Kováčik R, Meyer B, et al. CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angew Chem Int Ed, 2007, 46: 5624–5627

    Article  CAS  Google Scholar 

  10. Jiang X, Ding Y, Zheng S, et al. In-situ generated CsPbBr3 nanocrystals on O-defective WO3 for photocatalytic CO2 reduction. ChemSusChem, 2022, 15: e202102295

    Article  CAS  Google Scholar 

  11. Aljabour A, Coskun H, Zheng X, et al. Active sulfur sites in semimetallic titanium disulfide enable CO2 electroreduction. ACS Catal, 2019, 10: 66–72

    Article  Google Scholar 

  12. Xie Y, Li X, Wang Y, et al. Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2. Appl Surf Sci, 2020, 499: 143964

    Article  CAS  Google Scholar 

  13. Fonseca HAB, Verga LG, Da Silva JLF. Ab initio study of CO2 activation on pristine and Fe-decorated WS2 nanoflakes. J Phys Chem A, 2021, 125: 7769–7777

    Article  CAS  Google Scholar 

  14. Ren X, Gao M, Zhang Y, et al. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl Catal B-Environ, 2020, 274: 119063

    Article  CAS  Google Scholar 

  15. Kong XY, Lee WPC, Ong WJ, et al. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbonneutral fuels. ChemCatChem, 2016, 8: 3074–3081

    Article  CAS  Google Scholar 

  16. Liu P, Liu H, Zhang S, et al. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2·− adsorption and electron transfer. J Colloid Interface Sci, 2021, 602: 740–747

    Article  CAS  Google Scholar 

  17. Low J, Yu J, Ho W. Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett, 2015, 6: 4244–4251

    Article  CAS  Google Scholar 

  18. An X, Li K, Tang J. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem, 2014, 7: 1086–1093

    Article  CAS  Google Scholar 

  19. Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed, 2018, 57: 13570–13574

    Article  CAS  Google Scholar 

  20. Wu LY, Mu YF, Guo XX, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed, 2019, 58: 9491–9495

    Article  CAS  Google Scholar 

  21. Zhao S, Liang Q, Li Z, et al. Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction. Nano Res, 2022, 15: 5953–5961

    Article  CAS  Google Scholar 

  22. Xu YF, Yang MZ, Chen BX, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc, 2017, 139: 5660–5663

    Article  CAS  Google Scholar 

  23. Chen Z, Hu Y, Wang J, et al. Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chem Mater, 2020, 32: 1517–1525

    Article  CAS  Google Scholar 

  24. Xiao H, Fu J, Wei X, et al. Photoelectron-extractive and ambient-stable CsPbBr3@SnO2 nanocrystals for high-performance photodetection. Laser Photonics Rev, 2022, 16: 2200276

    Article  CAS  Google Scholar 

  25. Wang M, Liang D, Ma W, et al. Significant performance enhancement of UV-Vis self-powered CsPbBr3 quantum dot-based photodetectors induced by ligand modification and P3HT embedding. Opt Lett, 2022, 47: 4512–4515

    Article  CAS  Google Scholar 

  26. Li X, Cai W, Guan H, et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem Eng J, 2021, 419: 129551

    Article  CAS  Google Scholar 

  27. Wang J, Liu J, Du Z, et al. Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. J Energy Chem, 2021, 54: 770–785

    Article  CAS  Google Scholar 

  28. Wu HL, Li XB, Tung CH, et al. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv Mater, 2019, 31: 1900709

    Article  Google Scholar 

  29. Huang H, Pradhan B, Hofkens J, et al. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett, 2020, 5: 1107–1123

    Article  CAS  Google Scholar 

  30. Pan A, Ma X, Huang S, et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J Phys Chem Lett, 2019, 10: 6590–6597

    Article  CAS  Google Scholar 

  31. Zhang Z, Shu M, Jiang Y, et al. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem Eng J, 2021, 414: 128889

    Article  CAS  Google Scholar 

  32. Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun, 2020, 11: 4613

    Article  CAS  Google Scholar 

  33. Wang X, He J, Mao L, et al. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem Eng J, 2021, 416: 128077

    Article  CAS  Google Scholar 

  34. Jiang Y, Chen HY, Li JY, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv Funct Mater, 2020, 30: 2004293

    Article  CAS  Google Scholar 

  35. Liao JF, Cai YT, Li JY, et al. Plasmonic CsPbBr3−Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction. J Energy Chem, 2021, 53: 309–315

    Article  CAS  Google Scholar 

  36. Tang R, Sun H, Zhang Z, et al. Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction. Chem Eng J, 2022, 429: 132137

    Article  CAS  Google Scholar 

  37. Yu S, Wilson AJ, Heo J, et al. Plasmonic control of multi-electron transfer and C−C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett, 2018, 18: 2189–2194

    Article  CAS  Google Scholar 

  38. Vilé G, Albani D, Nachtegaal M, et al. A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed, 2015, 54: 11265–11269

    Article  Google Scholar 

  39. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696

    Article  CAS  Google Scholar 

  40. Hu H, Guan W, Xu Y, et al. Construction of single-atom platinum catalysts enabled by CsPbBr3 nanocrystals. ACS Nano, 2021, 15: 13129–13139

    Article  CAS  Google Scholar 

  41. Peng M, Ma Y, Zhang L, et al. All-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide for high-performance photodetectors by energy band alignment engineering. Adv Funct Mater, 2021, 31: 2105051

    Article  CAS  Google Scholar 

  42. Li X, Wen J, Low J, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100

    Article  Google Scholar 

  43. Zhang S, Chang CR, Huang ZQ, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J Am Chem Soc, 2016, 138: 2629–2637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61904023 and 11974063) and the Natural Science Foundation of Chongqing (cstc2019jcyj-bshX0078).

Author information

Authors and Affiliations

Authors

Contributions

Qian Q and Zang Z supervised the project. Xiao H conceived the idea, designed and completed the experiments. Qian Q performed the simulation calculation and analysis. All authors contributed to reviewing and writing the paper.

Corresponding authors

Correspondence to Qingkai Qian  (钱庆凯) or Zhigang Zang  (臧志刚).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Hongbin Xiao received his PhD degree from The University of Tokyo in 2020. He joined the School of Chemistry and Chemical Engineering, Chongqing University as an assistant researcher in 2020. His research interests mainly focus on the syntheses of perovskites materials and their applications in photodetection, photocatalytic CO2 reduction and lasing.

Qingkai Qian received his PhD degree from Hong Kong University of Science and Technology in 2018. He joined the School of Optoelectronic Engineering, Chongqing University as an associate professor in 2021. His research interests mainly focus on photodetectors, perovskites semiconductor materials and their applications in transistors, solar cells and light-emitting diodes.

Zhigang Zang received his PhD degree from Kyushu University in 2011. He joined the School of Optoelectronic Engineering, Chongqing University as a professor in 2014. His research interests mainly focus on the synthesis of perovskite-based semiconductor materials and their applications in solar cells and light-emitting diodes.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Qian, Q. & Zang, Z. Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction. Sci. China Mater. 66, 1810–1819 (2023). https://doi.org/10.1007/s40843-022-2304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2304-2

Keywords

Navigation