Skip to main content
Log in

Peptide-based porous materials and their applications

肽基多孔材料及其应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The porous structure formed by the self-assembly of peptides is a new generation of porous materials with potential applications in the fields of catalysis, sensing, separation, and drug delivery. The pores of the material are filled with amino acid side chains, so the pore size and properties of the peptide-based porous material can be adjusted by rational design or modification of the peptide sequences. The introduction of functional moieties and metal ions has expanded the range of peptide-based porous materials. This review covers the design, synthesis, self-assembly, and properties of peptide-based porous materials, and summarizes their applications in different fields in recent years.

摘要

多肽自组装形成的多孔结构是新一代多孔材料, 在催化、传感、分离和药物递送等领域具有很好的应用前景. 肽基多孔材料的孔内充满氨基酸侧链, 因此可以通过合理设计或修改肽序列来调节其孔径大小和性能. 功能基团和金属离子的引入进一步扩展了多肽基多孔材料的结构与性能. 在这篇综述中, 我们讨论了肽基多孔材料的设计、合成、组装及其性能, 并综述了近年来其在不同领域的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Feng Z, Xu B. Assemblies of peptides in a complex environment and their applications. Angew Chem Int Ed, 2019, 58: 10423–10432

    Article  CAS  Google Scholar 

  2. Levin A, Hakala TA, Schnaider L, et al. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem, 2020, 4: 615–634

    Article  CAS  Google Scholar 

  3. Wang J, Liu K, Xing R, et al. Peptide self-assembly: Thermodynamics and kinetics. Chem Soc Rev, 2016, 45: 5589–5604

    Article  CAS  Google Scholar 

  4. Sinha NJ, Langenstein MG, Pochan DJ, et al. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem Rev, 2021, 121: 13915–13935

    Article  CAS  Google Scholar 

  5. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295: 2418–2421

    Article  CAS  Google Scholar 

  6. Ariga K, Nishikawa M, Mori T, et al. Self-assembly as a key player for materials nanoarchitectonics. Sci Tech Adv Mater, 2019, 20: 51–95

    Article  CAS  Google Scholar 

  7. Xing Q, Zhang J, Xie Y, et al. Aromatic motifs dictate nanohelix handedness of tripeptides. ACS Nano, 2018, 12: 12305–12314

    Article  CAS  Google Scholar 

  8. Wang Y, Qi W, Xing R, et al. Capillary flow-driven, hierarchical chiral self-assembly of peptide nanohelix arrays. Adv Mater Interfaces, 2017, 4: 1700514

    Article  Google Scholar 

  9. Fan Z, Sun L, Huang Y, et al. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat Nanotech, 2016, 11: 388–394

    Article  CAS  Google Scholar 

  10. Wang Y, Huang R, Qi W, et al. Capillary force-driven, hierarchical co-assembly of dandelion-like peptide microstructures. Small, 2015, 11: 2893–2902

    Article  CAS  Google Scholar 

  11. Fatouros DG, Lamprou DA, Urquhart AJ, et al. Lipid-like self-assembling peptide nanovesicles for drug delivery. ACS Appl Mater Interfaces, 2014, 6: 8184–8189

    Article  CAS  Google Scholar 

  12. Xie Y, Wang X, Huang R, et al. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons. Langmuir, 2015, 31: 2885–2894

    Article  CAS  Google Scholar 

  13. Yang X, Wang Y, Qi W, et al. Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. J Mater Chem B, 2019, 7: 2981–2988

    Article  CAS  Google Scholar 

  14. Abbas M, Xing R, Zhang N, et al. Antitumor photodynamic therapy based on dipeptide fibrous hydrogels with incorporation of photosensitive drugs. ACS Biomater Sci Eng, 2017, 4: 2046–2052

    Article  Google Scholar 

  15. Gazit E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J, 2002, 16: 77–83

    Article  CAS  Google Scholar 

  16. Sardan Ekiz M, Cinar G, Aref Khalily M, et al. Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2016, 27: 402002

    Article  Google Scholar 

  17. Qian Y, Wang W, Wang Z, et al. pH-triggered peptide self-assembly for targeting imaging and therapy toward angiogenesis with enhanced signals. ACS Appl Mater Interfaces, 2018, 10: 7871–7881

    Article  CAS  Google Scholar 

  18. Huang R, Wang Y, Qi W, et al. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Res Lett, 2014, 9: 653

    Article  Google Scholar 

  19. Jeong W, Kwon S, Lim Y. Modular self-assembling peptide platform with a tunable thermoresponsiveness via a single amino acid substitution. Adv Funct Mater, 2018, 28: 1803114

    Article  Google Scholar 

  20. Zou Q, Zhang L, Yan X, et al. Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. Angew Chem Int Ed, 2014, 53: 2366–2370

    Article  CAS  Google Scholar 

  21. Montenegro J, Vázquez-Vázquez C, Kalinin A, et al. Coupling of carbon and peptide nanotubes. J Am Chem Soc, 2014, 136: 2484–2491

    Article  CAS  Google Scholar 

  22. Fuertes A, Juanes M, Granja JR, et al. Supramolecular functional assemblies: Dynamic membrane transporters and peptide nanotubular composites. Chem Commun, 2017, 53: 7861–7871

    Article  CAS  Google Scholar 

  23. Moriuchi T, Hirao T. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Acc Chem Res, 2010, 43: 1040–1051

    Article  CAS  Google Scholar 

  24. Van Speybroeck V, Hemelsoet K, Joos L, et al. Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev, 2015, 44: 7044–7111

    Article  CAS  Google Scholar 

  25. Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444

    Article  Google Scholar 

  26. Lee JSM, Cooper AI. Advances in conjugated microporous polymers. Chem Rev, 2020, 120: 2171–2214

    Article  CAS  Google Scholar 

  27. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science, 2017, 355: eaal1585

    Article  Google Scholar 

  28. Shen Y, Wang Y, Hamley IW, et al. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci, 2021, 123: 101469

    Article  CAS  Google Scholar 

  29. Görbitz C. Microporous organic materials from hydrophobic dipeptides. Chem Eur J, 2007, 13: 1022–1031

    Article  Google Scholar 

  30. Wang Y, Qi W, Huang R, et al. Rational design of chiral nanostructures from self-assembly of a ferrocene-modified dipeptide. J Am Chem Soc, 2015, 137: 7869–7880

    Article  CAS  Google Scholar 

  31. Wang Y, Li Q, Zhang J, et al. Self-templated, enantioselective assembly of an amyloid-like dipeptide into multifunctional hierarchical helical arrays. ACS Nano, 2021, 15: 9827–9840

    Article  Google Scholar 

  32. Bellotto O, Pierri G, Rozhin P, et al. Dipeptide self-assembly into water-channels and gel biomaterial. Org Biomol Chem, 2022, 20: 6211–6218

    Article  CAS  Google Scholar 

  33. Garcia AM, Iglesias D, Parisi E, et al. Chirality effects on peptide self-assembly unraveled from molecules to materials. Chem, 2018, 4: 1862–1876

    Article  CAS  Google Scholar 

  34. Piotrowska R, Hesketh T, Wang H, et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat Mater, 2021, 20: 403–409

    Article  CAS  Google Scholar 

  35. Fletcher JM, Harniman RL, Barnes FRH, et al. Self-assembling cages from coiled-coil peptide modules. Science, 2013, 340: 595–599

    Article  CAS  Google Scholar 

  36. Galloway JM, Bray HEV, Shoemark DK, et al. De novo designed peptide and protein hairpins self-assemble into sheets and nanoparticles. Small, 2021, 17: 2100472

    Article  CAS  Google Scholar 

  37. Teng P, Niu Z, She F, et al. Hydrogen-bonding-driven 3D supramolecular assembly of peptidomimetic zipper. J Am Chem Soc, 2018, 140: 5661–5665

    Article  CAS  Google Scholar 

  38. Sang P, Shi Y, Huang B, et al. Sulfono-γ-AApeptides as helical mimetics: Crystal structures and applications. Acc Chem Res, 2020, 53: 2425–2442

    Article  CAS  Google Scholar 

  39. Heinz-Kunert SL, Pandya A, Dang VT, et al. Assembly of π-stacking helical peptides into a porous and multivariable proteomimetic framework. J Am Chem Soc, 2022, 144: 7001–7009

    Article  CAS  Google Scholar 

  40. Emami S, Paz FAA, Mendes A, et al. Toward the construction of 3D dipeptide-metal frameworks. Cryst Growth Des, 2014, 14: 4777–4780

    Article  CAS  Google Scholar 

  41. Martí-Gastaldo C, Warren JE, Stylianou KC, et al. Enhanced stability in rigid peptide-based porous materials. Angew Chem Int Ed, 2012, 51: 11044–11048

    Article  Google Scholar 

  42. Chen Y, Yang Y, Orr AA, et al. Self-assembled peptide nano-superstructure towards enzyme mimicking hydrolysis. Angew Chem Int Ed, 2021, 60: 17164–17170

    Article  CAS  Google Scholar 

  43. Liu J, Zhang J, Zhang L, et al. Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity. Sci China Chem, 2022, doi: https://doi.org/10.1007/s11426-022-1351-1

  44. Chen Y, Guerin S, Yuan H, et al. Guest molecule-mediated energy harvesting in a conformationally sensitive peptide-metal organic framework. J Am Chem Soc, 2022, 144: 3468–3476

    Article  CAS  Google Scholar 

  45. Martí-Gastaldo C, Warren JE, Briggs ME, et al. Sponge-like behaviour in isoreticular Cu(Gly-His-X) peptide-based porous materials. Chem Eur J, 2015, 21: 16027–16034

    Article  Google Scholar 

  46. Katsoulidis AP, Antypov D, Whitehead GFS, et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature, 2019, 565: 213–217

    Article  CAS  Google Scholar 

  47. Sawada T, Matsumoto A, Fujita M. Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel. Angew Chem Int Ed, 2014, 53: 7228–7232

    Article  CAS  Google Scholar 

  48. Schnitzer T, Paenurk E, Trapp N, et al. Peptide-metal frameworks with metal strings guided by dispersion interactions. J Am Chem Soc, 2021, 143: 644–648

    Article  CAS  Google Scholar 

  49. Afonso R, Mendes A, Gales L. Peptide-based solids: Porosity and zeolitic behavior. J Mater Chem, 2012, 22: 1709–1723

    Article  CAS  Google Scholar 

  50. Misra R, Saseendran A, Dey S, et al. Metal-helix frameworks from short hybrid peptide foldamers. Angew Chem Int Ed, 2019, 58: 2251–2255

    Article  CAS  Google Scholar 

  51. Navarro-Sánchez J, Mullor-Ruíz I, Popescu C, et al. Peptide metal-organic frameworks under pressure: Flexible linkers for cooperative compression. Dalton Trans, 2018, 47: 10654–10659

    Article  Google Scholar 

  52. Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, et al. Peptide metal-organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc, 2017, 139: 4294–4297

    Article  Google Scholar 

  53. Afonso R, Durão J, Mendes A, et al. Dipeptide crystals as excellent permselective materials: Sequential exclusion of argon, nitrogen, and oxygen. Angew Chem Int Ed, 2010, 49: 3034–3036

    Article  CAS  Google Scholar 

  54. Afonso R, Mendes A, Gales L. Hydrophobic dipeptide crystals: A promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity. Phys Chem Chem Phys, 2014, 16: 19386–19393

    Article  CAS  Google Scholar 

  55. Zhao Z, Gupta KM, He Z, et al. Dipeptide crystals as reverse osmosis membranes for water desalination: Atomistic simulation. J Phys Chem C, 2018, 122: 6026–6032

    Article  CAS  Google Scholar 

  56. Comotti A, Fraccarollo A, Bracco S, et al. Porous dipeptide crystals as selective CO2 adsorbents: Experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. CrystEngComm, 2013, 15: 1503–1507

    Article  CAS  Google Scholar 

  57. Yadav VN, Comotti A, Sozzani P, et al. Microporous molecular materials from dipeptides containing non-proteinogenic residues. Angew Chem Int Ed, 2015, 54: 15684–15688

    Article  Google Scholar 

  58. Bracco S, Asnaghi D, Negroni M, et al. Porous dipeptide crystals as volatile-drug vessels. Chem Commun, 2018, 54: 148–151

    Article  CAS  Google Scholar 

  59. Soldatov DV, Moudrakovski IL, Ripmeester JA. Dipeptides as microporous materials. Angew Chem Int Ed, 2004, 43: 6308–6311

    Article  CAS  Google Scholar 

  60. Distefano G, Comotti A, Bracco S, et al. Porous dipeptide crystals as polymerization nanoreactors. Angew Chem, 2012, 124: 9392–9396

    Article  Google Scholar 

  61. Görbitz CH, Gundersen E. L-valyl-L-alanine. Acta Crystlogr C Cryst Struct Commun, 1996, 52: 1764–1767

    Article  Google Scholar 

  62. Henrik Görbitz C. Nanotubes from hydrophobic dipeptides: Pore size regulation through side chain substitution. New J Chem, 2003, 27: 1789–1793

    Article  Google Scholar 

  63. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300: 625–627

    Article  CAS  Google Scholar 

  64. Silva RF, Araújo DR, Silva ER, et al. L-diphenylalanine microtubes as a potential drug-delivery system: Characterization, release kinetics, and cytotoxicity. Langmuir, 2013, 29: 10205–10212

    Article  CAS  Google Scholar 

  65. Adler-Abramovich L, Aronov D, Beker P, et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat Nanotech, 2009, 4: 849–854

    Article  CAS  Google Scholar 

  66. Nguyen V, Zhu R, Jenkins K, et al. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat Commun, 2016, 7: 13566

    Article  CAS  Google Scholar 

  67. Kralj S, Bellotto O, Parisi E, et al. Heterochirality and halogenation control phe-phe hierarchical assembly. ACS Nano, 2020, 14: 16951–16961

    Article  CAS  Google Scholar 

  68. Chen J, Zhang B, Xia F, et al. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. Nanoscale, 2016, 8: 7127–7136

    Article  CAS  Google Scholar 

  69. Cui Y, Li B, He H, et al. Metal-organic frameworks as platforms for functional materials. Acc Chem Res, 2016, 49: 483–493

    Article  CAS  Google Scholar 

  70. Li B, Wen HM, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater, 2016, 28: 8819–8860

    Article  CAS  Google Scholar 

  71. Anderson SL, Stylianou KC. Biologically derived metal organic frameworks. Coord Chem Rev, 2017, 349: 102–128

    Article  CAS  Google Scholar 

  72. Stylianou KC, Gómez L, Imaz I, et al. Engineering homochiral metal-organic frameworks by spatially separating 1D chiral metal-peptide ladders: Tuning the pore size for enantioselective adsorption. Chem Eur J, 2015, 21: 9964–9969

    Article  CAS  Google Scholar 

  73. Takayama T, Ohuchida S, Koike Y, et al. Structural analysis of cadmium-glycylglycine complexes studied by X-ray diffraction and high resolution 113Cd and 13C solid state NMR. Bull Chem Soc Jpn, 1996, 69: 1579–1586

    Article  CAS  Google Scholar 

  74. Ueda E, Yoshikawa Y, Kishimoto N, et al. New bioactive zinc(II) complexes with peptides and their derivatives: Synthesis, structure, and in vitro insulinomimetic activity. Bull Chem Soc Jpn, 2004, 77: 981–986

    Article  CAS  Google Scholar 

  75. Lee HY, Kampf JW, Park KS, et al. Covalent metal-peptide framework compounds that extend in one and two dimensions. Cryst Growth Des, 2008, 8: 296–303

    Article  CAS  Google Scholar 

  76. Carbonell C, Stylianou KC, Hernando J, et al. Femtolitre chemistry assisted by microfluidic pen lithography. Nat Commun, 2013, 4: 2173

    Article  Google Scholar 

  77. Katsoulidis AP, Park KS, Antypov D, et al. Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew Chem Int Ed, 2014, 53: 193–198

    Article  CAS  Google Scholar 

  78. Martí-Gastaldo C, Antypov D, Warren JE, et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat Chem, 2014, 6: 343–351

    Article  Google Scholar 

  79. Peri D, Ciston J, Gándara F, et al. Crystalline fibers of metal-peptide double ladders. Inorg Chem, 2013, 52: 13818–13820

    Article  CAS  Google Scholar 

  80. Ferrari R, Bernés S, de Barbarin CR, et al. Interaction between glyglu and Ca2+, Pb2+, Cd2+ and Zn2+ in solid state and aqueous solution. Inorg Chim Acta, 2002, 339: 193–201

    Article  CAS  Google Scholar 

  81. Rabone J, Yue YF, Chong SY, et al. An adaptable peptide-based porous material. Science, 2010, 329: 1053–1057

    Article  CAS  Google Scholar 

  82. Comotti A, Bracco S, Distefano G, et al. Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun, 2009, 284–286

  83. Beesley JL, Baum HE, Hodgson LR, et al. Modifying self-assembled peptide cages to control internalization into mammalian cells. Nano Lett, 2018, 18: 5933–5937

    Article  CAS  Google Scholar 

  84. Beker P, Koren I, Amdursky N, et al. Bioinspired peptide nanotubes as supercapacitor electrodes. J Mater Sci, 2010, 45: 6374–6378

    Article  CAS  Google Scholar 

  85. Kholkin A, Amdursky N, Bdikin I, et al. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano, 2010, 4: 610–614

    Article  CAS  Google Scholar 

  86. Lee JH, Heo K, Schulz-Schönhagen K, et al. Diphenylalanine peptide nanotube energy harvesters. ACS Nano, 2018, 12: 8138–8144

    Article  CAS  Google Scholar 

  87. Nguyen V, Jenkins K, Yang R. Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy, 2015, 17: 323–329

    Article  CAS  Google Scholar 

  88. Bdikin I, Bystrov V, Kopyl S, et al. Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes. Appl Phys Lett, 2012, 100: 043702

    Article  Google Scholar 

  89. Gan Z, Wu X, Zhu X, et al. Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes. Angew Chem Int Ed, 2013, 52: 2055–2059

    Article  CAS  Google Scholar 

  90. Gargiulo N, Peluso A, Aprea P, et al. A chromium-based metal organic framework as a potential high performance adsorbent for anaesthetic vapours. RSC Adv, 2014, 4: 49478–49484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22278306, 22278314, 21621004 and 22078239) and the State Key Laboratory of Chemical Engineering (SKL-ChE-21T03).

Author information

Authors and Affiliations

Authors

Contributions

Wang Y conceived the idea. Wang Y, Min J, Wei H, Liu J, and Liang Y wrote the manuscript. Wang Y, Wang Y (Tianjin University of Traditional Chinese Medicine), and Qi W revised the manuscript. Zhang G, Zhang W, and Su R provided meaningful suggestions.

Corresponding authors

Correspondence to Yuefei Wang  (王跃飞), Yuefei Wang  (王跃飞) or Wei Qi  (齐崴).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yuefei Wang obtained his PhD degree from Tianjin University, China in 2015. He is now an associated professor at the School of Chemical Engineering and Technology, Tianjin University. He joined the State Key Laboratory of Chemical Engineering in 2017 and worked as a visiting scholar in the lab of Prof. Nicholas A. Kotov at the University of Michigan, Ann Arbor, USA, in 2018. His research interests mainly focus on chiral peptide nanomaterials, drug delivery and biocatalysis.

Yuefei Wang obtained his PhD degree from Tianjin University of Traditional Chinese Medicine (Tianjin, China) in 2011. He is a professor in the Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. He joined the State Key Laboratory of Component-based Chinese Medicine in 2020 and Haihe Laboratory of Modern Chinese Medicine in 2021. He is committed to exploring the active substances and mechanism of traditional Chinese medicine, and quality control of Chinese Materia Medica.

Wei Qi received her PhD degree in chemical engineering from Tianjin University in 2002 and was a visiting scholar at the University of Illinois at Urbana-Champaign, USA from 2012–2013. She has been a professor of chemical and biochemical engineering at Tianjin University since 2009 and is now the director of the Graduate Education Office, Graduate School of Tianjin University. Her research interest involves the development of biochemicals, biofuels and biomaterials via biocatalysis and industrial catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Min, J., Wei, H. et al. Peptide-based porous materials and their applications. Sci. China Mater. 66, 470–484 (2023). https://doi.org/10.1007/s40843-022-2285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2285-5

Keywords

Navigation