Skip to main content
Log in

A generic designing rule for realizing quantum anomalous Hall phase in a transition-metal trichalcogenide family

二维过渡金属三元硫属化合物中实现量子反常霍尔效应的理论设计

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Different from introducing ferromagnetism in three-dimensional (3D) topological insulators, empowering nontrivial band topology with 2D ferromagnetic (2DFM) materials is another way to realize quantum anomalous Hall effect (QAHE). The recently discovered 2DFM insulators provide unprecedented opportunities for realizing such an intriguing quantum phenomenon. Here, by using first-principles approaches, we design a generic rule for realizing QAHE in the transition-metal trichalcogenide family materials of Cr2A2X6 (where A = Si, Ge, Sn; X = S, Se, Te), whose design principle is based on that a 2D topologically trivial magnetic insulator can be converted into a QAH system via proper surface modification. Taking silicene-passivated Cr2Sn2Se6 as an illustration, we show that the Cuire temperature of Cr2Sn2Se6 monolayer can be enhanced up to ∼92 K after silicene passivation. Most strikingly, such a heterostructure harbors QAHE with a band gap of ∼30 meV. Further low-effective model analyses reveal that the topologically nontrivial states are attributed to the honeycomb lattice of Cr atoms. All those results demonstrate that our proposal is general, which opens a new avenue to explore high-temperature QAHE.

摘要

区别于在三维拓扑绝缘体引入磁性的设计思路, 在二维铁磁材料中引入拓扑特性是实现量子反常霍尔效应(QAHE)的一种新途径. 最近实验成功制备的二维铁磁绝缘体为实现该效应提供了新的契机. 本文基于密度泛函理论的第一性原理计算, 设计了一个在过渡金属三元硫属化合物Cr2A2X6(其中A = Si, Ge, Sn; X = S, Se, Te)中实现QAHE的普适规则. 该设计原则是, 通过适当的表面修饰可将二维非拓扑的磁性绝缘体转变为量子反常霍尔体系. 以硅烯修饰的Cr2Sn2Se6 (Si/Cr2Sn2Se6)为例, 计算发现Cr2Sn2Se6单层的居里温度可提高至92 K. 具体的电子能带和拓扑性质计算发现, Si/Cr2Sn2Se6异质结存在约30 meV的拓扑非平庸带隙, 即该体系中可以实现QAHE. 进一步的低能有效模型分析表明, Si/Cr2Sn2Se6的拓扑特性是由Cr2A2X6六角晶格中的Cr原子贡献的. 此外, 还发现其他Cr2A2X6通过表面修饰也可以实现QAHE. 以上研究结果证实了本文方案的普适性, 其为实现高温QAHE提供了新的理论指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haldane FDM. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett, 1988, 61: 2015–2018

    Article  CAS  Google Scholar 

  2. Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys, 2010, 82: 1539–1592

    Article  Google Scholar 

  3. Liu CX, Zhang SC, Qi XL. The quantum anomalous Hall effect: Theory and experiment. Annu Rev Condens Matter Phys, 2016, 7: 301–321

    Article  Google Scholar 

  4. Yu R, Zhang W, Zhang HJ, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61–64

    Article  CAS  Google Scholar 

  5. Chang CZ, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167–170

    Article  CAS  Google Scholar 

  6. Qiao Z, Ren W, Chen H, et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys Rev Lett, 2014, 112: 116404

    Article  Google Scholar 

  7. Ou Y, Liu C, Jiang G, et al. Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator. Adv Mater, 2018, 30: 1703062

    Article  Google Scholar 

  8. Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett, 2012, 109: 055502

    Article  Google Scholar 

  9. Grauer S, Schreyeck S, Winnerlein M, et al. Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state. Phys Rev B, 2015, 92: 201304

    Article  Google Scholar 

  10. Li Y, West D, Huang H, et al. Theory of the Dirac half metal and quantum anomalous Hall effect in Mn-intercalated epitaxial graphene. Phys Rev B, 2015, 92: 201403

    Article  Google Scholar 

  11. Wang ZF, Liu Z, Liu F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys Rev Lett, 2013, 110: 196801

    Article  CAS  Google Scholar 

  12. Wang ZF, Su N, Liu F. Prediction of a two-dimensional organic topological insulator. Nano Lett, 2013, 13: 2842–2845

    Article  CAS  Google Scholar 

  13. Hu J, Alicea J, Wu R, et al. Giant topological insulator gap in graphene with 5d adatoms. Phys Rev Lett, 2012, 109: 266801

    Article  Google Scholar 

  14. Pan H, Li Z, Liu CC, et al. Valley-polarized quantum anomalous Hall effect in silicene. Phys Rev Lett, 2014, 112: 106802

    Article  Google Scholar 

  15. Liu Z, Zhao G, Liu B, et al. Intrinsic quantum anomalous Hall effect with in-plane magnetization: Searching rule and material prediction. Phys Rev Lett, 2018, 121: 246401

    Article  Google Scholar 

  16. Chen G, Sharpe AL, Fox EJ, et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579: 56–61

    Article  CAS  Google Scholar 

  17. Chen MX, Weinert M. Half-metallic Dirac cone in zigzag graphene nanoribbons on graphene. Phys Rev B, 2016, 94: 035433

    Article  Google Scholar 

  18. Zhou J, Sun Q, Wang Q, et al. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film. Nanoscale, 2016, 8: 11202–11209

    Article  CAS  Google Scholar 

  19. Huang C, Zhou J, Wu H, et al. Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys Rev B, 2017, 95: 045113

    Article  Google Scholar 

  20. Zhang H, Yang W, Ning Y, et al. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys Rev B, 2020, 101: 205404

    Article  CAS  Google Scholar 

  21. Zhang H, Yang W, Cui P, et al. Prediction of monolayered ferromagnetic CrMnI6 as an intrinsic high-temperature quantum anomalous Hall system. Phys Rev B, 2020, 102: 115413

    Article  CAS  Google Scholar 

  22. Zhang H, Yang W, Ning Y, et al. High-temperature and multichannel quantum anomalous Hall effect in pristine and alkali-metal-doped CrBr3 monolayers. Nanoscale, 2020, 12: 13964–13972

    Article  CAS  Google Scholar 

  23. Chang CZ, Zhao W, Kim DY, et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat Mater, 2015, 14: 473–477

    Article  CAS  Google Scholar 

  24. Kou X, Guo ST, Fan Y, et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys Rev Lett, 2014, 113: 137201

    Article  Google Scholar 

  25. Checkelsky JG, Yoshimi R, Tsukazaki A, et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat Phys, 2014, 10: 731–736

    Article  CAS  Google Scholar 

  26. Deng Y, Yu Y, Shi MZ, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367: 895–900

    Article  CAS  Google Scholar 

  27. Lee DS, Kim TH, Park CH, et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm, 2013, 15: 5532–5538

    Article  CAS  Google Scholar 

  28. Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator. Chin Phys Lett, 2019, 36: 076801

    Article  CAS  Google Scholar 

  29. Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci Adv, 2019, 5: eaaw5685

    Article  CAS  Google Scholar 

  30. Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys Rev Lett, 2019, 122: 206401

    Article  CAS  Google Scholar 

  31. Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater, 2020, 19: 522–527

    Article  CAS  Google Scholar 

  32. Otrokov MM, Klimovskikh II, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576: 416–422

    Article  CAS  Google Scholar 

  33. Otrokov MM, Rusinov IP, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys Rev Lett, 2019, 122: 107202

    Article  CAS  Google Scholar 

  34. Sun H, Xia B, Chen Z, et al. Rational design principles of the quantum anomalous Hall effect in superlatticelike magnetic topological insulators. Phys Rev Lett, 2019, 123: 096401

    Article  CAS  Google Scholar 

  35. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  CAS  Google Scholar 

  36. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  CAS  Google Scholar 

  37. Guo K, Deng B, Liu Z, et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3. Sci China Mater, 2020, 63: 413–420

    Article  CAS  Google Scholar 

  38. Zhang H, Qin W, Chen M, et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 2019, 99: 165410

    Article  CAS  Google Scholar 

  39. Zou R, Zhan F, Zheng B, et al. Intrinsic quantum anomalous Hall phase induced by proximity in the van der Waals heterostructure germanene/Cr2Ge2Te6. Phys Rev B, 2020, 101: 161108

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  43. Liechtenstein AI, Anisimov VI, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B, 1995, 52: R5467–R5470

    Article  CAS  Google Scholar 

  44. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  Google Scholar 

  45. Mostofi AA, Yates JR, Lee YS, et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun, 2008, 178: 685–699

    Article  CAS  Google Scholar 

  46. Wu QS, Zhang SN, Song HF, et al. WannierTools: An open-source software package for novel topological materials. Comput Phys Commun, 2018, 224: 405–416

    Article  CAS  Google Scholar 

  47. Carteaux V, Brunet D, Ouvrard G, et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys-Condens Matter, 1995, 7: 69–87

    Article  CAS  Google Scholar 

  48. Siberchicot B, Jobic S, Carteaux V, et al. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J Phys Chem, 1996, 100: 5863–5867

    Article  CAS  Google Scholar 

  49. Li X, Yang J. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2: 7071–7076

    Article  CAS  Google Scholar 

  50. Sivadas N, Daniels MW, Swendsen RH, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91: 235425

    Article  Google Scholar 

  51. Zhang J, Zhao B, Yao Y, et al. Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures. Phys Rev B, 2015, 92: 165418

    Article  Google Scholar 

  52. Liu J, Park SY, Garrity KF, et al. Flux states and topological phases from spontaneous time-reversal symmetry breaking in CrSi(Ge)Te3-based systems. Phys Rev Lett, 2016, 117: 257201

    Article  Google Scholar 

  53. Tian Y, Gray MJ, Ji H, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater, 2016, 3: 025035

    Article  Google Scholar 

  54. Lin GT, Zhuang HL, Luo X, et al. Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3. Phys Rev B, 2017, 95: 245212

    Article  Google Scholar 

  55. Xing W, Chen Y, Odenthal PM, et al. Electric field effect in multilayer Cr2Ge2Te6: A ferromagnetic 2D material. 2D Mater, 2017, 4: 024009

    Article  Google Scholar 

  56. Tang X, Fan D, Peng K, et al. Dopant induced impurity bands and carrier concentration control for thermoelectric enhancement in p-type Cr2Ge2Te6. Chem Mater, 2017, 29: 7401–7407

    Article  CAS  Google Scholar 

  57. Xu C, Feng J, Xiang H, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4: 57

    Article  Google Scholar 

  58. Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114: 092405

    Article  Google Scholar 

  59. Chittari BL, Lee D, Banerjee N, et al. Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys Rev B, 2020, 101: 085415

    Article  CAS  Google Scholar 

  60. Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys Rev, 1955, 100: 564–573

    Article  CAS  Google Scholar 

  61. Kanamori J. Crystal distortion in magnetic compounds. J Appl Phys, 1960, 31: S14–S23

    Article  Google Scholar 

  62. Sun YY, Zhu LQ, Li Z, et al. Electric manipulation of magnetism in bilayer van der Waals magnets. J Phys-Condens Matter, 2019, 31: 205501

    Article  CAS  Google Scholar 

  63. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  64. Efetov DK, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett, 2010, 105: 256805

    Article  Google Scholar 

  65. Ye JT, Zhang YJ, Akashi R, et al. Superconducting dome in a gate-tuned band insulator. Science, 2012, 338: 1193–1196

    Article  CAS  Google Scholar 

  66. Liang QF, Yu R, Zhou J, et al. Topological states of non-Dirac electrons on a triangular lattice. Phys Rev B, 2016, 93: 035135

    Article  Google Scholar 

  67. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511–519

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12274276, 12174237, and 51871137) and the National Key R&D Program of China (2017YFB0405703).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang H and Xu X conceived the central ideas. Yang W carried out the calculations with substantial help from Zhang Y and Zhang J. Yang W, Zhang H, and Xu X wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Huisheng Zhang  (张会生) or Xiaohong Xu  (许小红).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Wenjia Yang obtained her MS degree from Shanxi Normal University in 2021. After that, she continued her education as a PhD candidate under the supervision of Prof. Xiaohong Xu at Shanxi Normal University. Her research focuses on topological states in low-dimensional magnetic materials based on first-principles calculations.

Huisheng Zhang received his PhD degree from Fudan University in 2016. He is currently an associate professor at Shanxi Normal University. His research mainly focuses on the electrical, magnetic, and topological properties of low-dimensional nanomaterials and heterostructures.

Xiaohong Xu received her PhD degree in materials science and engineering from Xi’an Jiaotong University, China in 2001. From 2001–2006, she worked at Huazhong University of Science and Technology, China, the University of Sheffield, UK, and Tohoku University, Japan as a postdoc or research fellow. Her research interest includes oxide semiconductor spintronics, magnetic recording media and interface physics of heterostructures.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhang, Y., Zhang, J. et al. A generic designing rule for realizing quantum anomalous Hall phase in a transition-metal trichalcogenide family. Sci. China Mater. 66, 1165–1171 (2023). https://doi.org/10.1007/s40843-022-2248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2248-2

Keywords

Navigation