Skip to main content
Log in

Silver-doped nickel thiolates as electrocatalysts for heterogeneous CO2 reduction

银掺杂镍的硫醇盐类团簇用于非均相电催化二氧化碳还原

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

精细调控具有原子尺度精确的团簇结构并将其应用于非均相催化研究, 对于从分子水平阐明催化反应机制, 明确催化反应活性位具有重要意义. 本文基于环已硫醇保护的Ni4团簇体系, 成功制备了一种全新的Ni3Ag2双金属团簇, 该团簇为Ni4团簇中一个Ni原子被两个Ag原子取代的结果. 研究发现将该团簇用于非均相电催化二氧化碳还原, Ni3Ag2双金属团簇催化二氧化碳还原产生一氧化碳的法拉第效率可达90%以上, 而母体结构Ni4团簇的催化产物主要为氢气. 对照实验与DFT理论计算结果表明, 电解中去配体过程对于Ni3Ag2团簇的高选择性催化具有重要作用. 其催化二氧化碳选择性还原的主要活性位为去配体后暴露出的Ni原子而非Ag原子.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang S, Fan Q, Xia R, et al. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc Chem Res, 2020, 53: 255–264

    Article  CAS  Google Scholar 

  2. Higgins D, Hahn C, Xiang C, et al. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett, 2018, 4: 317–324

    Article  Google Scholar 

  3. Nguyen TN, Dinh CT. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem Soc Rev, 2020, 49: 7488–7504

    Article  CAS  Google Scholar 

  4. Niu ZZ, Chi LP, Liu R, et al. Rigorous assessment of CO2 electro-reduction products in a flow cell. Energy Environ Sci, 2021, 14: 4169–4176

    Article  CAS  Google Scholar 

  5. Gao ZH, Wei K, Wu T, et al. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2022, 144: 5258–5262

    Article  CAS  Google Scholar 

  6. Du X, Jin R. Atomically precise metal nanoclusters for catalysis. ACS Nano, 2019, 13: 7383–7387

    Article  CAS  Google Scholar 

  7. Higaki T, Li Y, Zhao S, et al. Atomically tailored gold nanoclusters for catalytic application. Angew Chem Int Ed, 2019, 58: 8291–8302

    Article  CAS  Google Scholar 

  8. Du Y, Sheng H, Astruc D, et al. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem Rev, 2020, 120: 526–622

    Article  CAS  Google Scholar 

  9. Kauffman DR, Alfonso D, Matranga C, et al. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J Am Chem Soc, 2012, 134: 10237–10243

    Article  CAS  Google Scholar 

  10. Alfonso DR, Kauffman D, Matranga C. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. J Chem Phys, 2016, 144: 184705

    Article  Google Scholar 

  11. Kauffman DR, Thakkar J, Siva R, et al. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl Mater Interfaces, 2015, 7: 15626–15632

    Article  CAS  Google Scholar 

  12. Austin N, Zhao S, McKone JR, et al. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters. Catal Sci Technol, 2018, 8: 3795–3805

    Article  CAS  Google Scholar 

  13. Chen S, Li M, Yu S, et al. Ligand removal of Au25 nanoclusters by thermal and electrochemical treatments for selective CO2 electro-reduction to CO. J Chem Phys, 2021, 155: 051101

    Article  CAS  Google Scholar 

  14. Tang Q, Lee Y, Li DY, et al. Lattice-hydride mechanism in electro-catalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc, 2017, 139: 9728–9736

    Article  CAS  Google Scholar 

  15. Li F, Tang Q. The critical role of hydride (H) ligands in electrocatalytic CO2 reduction to HCOOH by [Cu25H22(PH3)12]Cl nanocluster. J Catal, 2020, 387: 95–101

    Article  CAS  Google Scholar 

  16. Zhang M, Wu TS, Hong S, et al. Efficient electrochemical reduction of CO2 by Ni−N catalysts with tunable performance. ACS Sustain Chem Eng, 2019, 7: 15030–15035

    Article  CAS  Google Scholar 

  17. Jia M, Choi C, Wu TS, et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem Sci, 2018, 9: 8775–8780

    Article  CAS  Google Scholar 

  18. Schneider J, Jia H, Kobiro K, et al. Nickel(II) macrocycles: Highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci, 2012, 5: 9502–9510

    Article  CAS  Google Scholar 

  19. Sahoo D, Yoo C, Lee Y. Direct CO2 addition to a Ni(0)−CO species allows the selective generation of a Nickel(II) carboxylate with expulsion of CO. J Am Chem Soc, 2018, 140: 2179–2185

    Article  CAS  Google Scholar 

  20. Tian F, Chen J, Chen F, et al. Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2via pseudo-Z-scheme interfacial charge transfer. Appl Catal B-Environ, 2021, 292: 120158

    Article  CAS  Google Scholar 

  21. Joya KS, Sinatra L, AbdulHalim LG, et al. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation. Nanoscale, 2016, 8: 9695–9703

    Article  CAS  Google Scholar 

  22. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592

    Article  Google Scholar 

  23. Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform, 2012, 4: 17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (92161110), the Natural Science Foundation of Hubei Province of China (2021CFB174), the Open Research Project of State key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2021006) and the Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Mate-ria Medica (BCMM202104).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen R supervised the project. Tian F designed the study, conducted the experiments and DFT calculations, and analyzed the results. Li W prepared the clusters. Guo W performed the electrochemical measurement. Li G assisted in the characterizations. All authors participated in the discussion of the results and organization of the manuscript.

Corresponding author

Correspondence to Rong Chen  (陈嵘).

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Fan Tian obtained his BSc (2013), MSc (2016), and PhD (2020) degrees from Wuhan Institute of Technology under the supervision of prof. Rong Chen. Currently, he is a chair associate professor at Wuhan Institute of Technology. His research interests focus on the development of nanoclusters and cluster-related DFT calculations.

Rong Chen received his PhD degree from the University of Hong Kong in 2006 under the supervision of prof. Chi-Ming Che and prof. Hongzhe Sun. After that, he worked at Wuhan Institute of Technology as a full professor from 2007 to 2021. Since 2022, he has been working at Wuhan Textile University as a full professor in the State Key Laboratory of New Textile Materials and Advanced Processing Technologies. His current research interests focus on the precise synthesis of micro-/nanostructured inorganic functional materials and their applications in environmental catalysis and adsorption, textiles and biomedicine.

Supplementary information Experimental details and supporting data are available in the online version of the paper.

supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Li, W., Guo, W. et al. Silver-doped nickel thiolates as electrocatalysts for heterogeneous CO2 reduction. Sci. China Mater. 66, 407–412 (2023). https://doi.org/10.1007/s40843-022-2230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2230-6

Navigation