Skip to main content
Log in

Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation

管状g-C3N4/ZnIn2S4纳米片异质结通过促进电荷分离 实现高效光催化合成H2O2

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Hydrogen peroxide is an environment-friendly reactive oxygen species and a significant green oxidant. However, the highly efficient and sustainable production of H2O2 remains a challenge. Herein, we demonstrated a state-of-the-art photocatalytic method for H2O2 production using an optimal tubular graphic carbon nitride (TCN)/ZnIn2S4 (ZIS) heterojunction. Within 3 h, a H2O2 production rate of 2.77 mmol g−1 h−1 was achieved by the TCN/ZIS heterojunction, which is 3.4- and 23.1-fold higher than that obtained by its individual TCN and ZIS components, respectively. Experimental results showed that the excellent photoactivity of TCN/ZIS is mainly due to the formation of heterojunction, which improves the charge separation ability and thereby promotes the proton-coupled electron transfer by initially reducing O2 to ·O2 and subsequently generating H2O2. This work has developed an efficient and green strategy for H2O2 production with scientific and practical value for environmental remediation.

摘要

过氧化氢(H2O2)是一种环保的活性氧和重要的绿色氧化剂. 然而, 到目前为止, 实现高效和绿色可持续H2O2生产仍然面临挑战. 本文中, 我们展示了管状氮化碳(TCN)和ZnIn2S4 (ZIS)纳米片(TCN/ZIS)异质结的光催化产H2O2 性能: 3 小时内H2O2 的生产速率为 2.77 mmol g−1 h−1, 分别为单独的TCN和ZIS的3.4倍和23.1倍. 实验结果表明, TCN/ZIS异质结优异的光催化活性主要源于ZIS促进了电荷分离, 从而通过将O2还原为·O2, 然后生成H2O2来实现质子耦合电子转移过程. 该工作提出了一种高效、 绿色的H2O2生产策略, 对环境修复具有重要科学意义和实用价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos-Martin JM, Blanco-Brieva G, Fierro JLG. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew Chem Int Ed, 2006, 45: 6962–6984

    Article  CAS  Google Scholar 

  2. Reybier K, Ayala S, Alies B, et al. Free superoxide is an intermediate in the production of H2O2 by copper(I)-Aβ peptide and O2. Angew Chem Int Ed, 2016, 55: 1085–1089

    Article  CAS  Google Scholar 

  3. Zhao S, Zhao X, Zhang H, et al. Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy, 2017, 35: 405–414

    Article  CAS  Google Scholar 

  4. Hu S, Qu X, Li P, et al. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites. Chem Eng J, 2018, 334: 410–418

    Article  CAS  Google Scholar 

  5. Sánchez-Quiles D, Tovar-Sánchez A. Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol, 2014, 48: 9037–9042

    Article  Google Scholar 

  6. Shiraishi Y, Kanazawa S, Tsukamoto D, et al. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal, 2013, 3: 2222–2227

    Article  CAS  Google Scholar 

  7. Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  8. Zhu B, Zhang L, Cheng B, et al. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl Catal B-Environ, 2018, 224: 983–999

    Article  CAS  Google Scholar 

  9. Wang X, Wang X, Huang J, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun, 2021, 12: 4112

    Article  CAS  Google Scholar 

  10. Hu J, Chen C, Zheng Y, et al. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small, 2020, 16: 2002988

    Article  CAS  Google Scholar 

  11. Zuo G, Wang Y, Teo WL, et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew Chem Int Ed, 2020, 59: 11287–11292

    Article  CAS  Google Scholar 

  12. Yang G, Chen D, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photo-reduction into renewable hydrocarbon fuel with high efficiency. Appl Catal B-Environ, 2017, 219: 611–618

    Article  CAS  Google Scholar 

  13. Yuan YJ, Shen Z, Wu S, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B-Environ, 2019, 246: 120–128

    Article  CAS  Google Scholar 

  14. Zhao X, You Y, Huang S, et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl Catal B-Environ, 2020, 278: 119251

    Article  CAS  Google Scholar 

  15. Xing M, Xu W, Dong C, et al. Metal sulfides as excellent Co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem, 2018, 4: 1359–1372

    Article  CAS  Google Scholar 

  16. Han Q, Li L, Gao W, et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl Mater Interface, 2021, 13: 15092–15100

    Article  CAS  Google Scholar 

  17. Liu J, Chen G, Sun J. Ag2S-modified ZnIn2S4nanosheets for photocatalytic H2 generation. ACS Appl Nano Mater, 2020, 3: 11017–11024

    Article  CAS  Google Scholar 

  18. Yang Y, Zeng Z, Zeng G, et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B-Environ, 2019, 258: 117956

    Article  CAS  Google Scholar 

  19. Lin B, Li H, An H, et al. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed highspeed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 220: 542–552

    Article  CAS  Google Scholar 

  20. Yang H, Cao R, Sun P, et al. Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl Catal B-Environ, 2019, 256: 117862

    Article  CAS  Google Scholar 

  21. Guo F, Cai Y, Guan W, et al. Graphite carbon nitride/ZnIn2S4 heterojunction photocatalyst with enhanced photocatalytic performance for degradation of tetracycline under visible light irradiation. J Phys Chem Solids, 2017, 110: 370–378

    Article  CAS  Google Scholar 

  22. Song B, Wang Q, Wang L, et al. Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. J Colloid Interface Sci, 2020, 559: 124–133

    Article  CAS  Google Scholar 

  23. Guo C, Wu B, Ye S, et al. Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution. J Colloid Interface Sci, 2022, 614: 367–377

    Article  CAS  Google Scholar 

  24. Yin C, Cui L, Pu T, et al. Facile fabrication of nano-sized hollow-CdS@g-C3N4 core-shell spheres for efficient visible-light-driven hydrogen evolution. Appl Surf Sci, 2018, 456: 464–472

    Article  CAS  Google Scholar 

  25. Liu F, Shi R, Wang Z, et al. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew Chem Int Ed, 2019, 58: 11791–11795

    Article  CAS  Google Scholar 

  26. Zhang Z, Huang J, Fang Y, et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv Mater, 2017, 29: 1606688

    Article  Google Scholar 

  27. Yang Y, Zeng G, Huang D, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl Catal B-Environ, 2020, 272: 118970

    Article  CAS  Google Scholar 

  28. Jiang L, Yuan X, Zeng G, et al. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J Colloid Interface Sci, 2019, 536: 17–29

    Article  CAS  Google Scholar 

  29. Chen X, Shi R, Chen Q, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy, 2019, 59: 644–650

    Article  CAS  Google Scholar 

  30. Du X, Bai X, Xu L, et al. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem Eng J, 2020, 384: 123245

    Article  CAS  Google Scholar 

  31. Chu K, Liu YP, Li YB, et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interface, 2020, 12: 7081–7090

    Article  CAS  Google Scholar 

  32. Zhao C, Li Q, Xie Y, et al. Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J Mater Chem A, 2020, 8: 305–312

    Article  CAS  Google Scholar 

  33. Li F, Xiao X, Zhao C, et al. TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci, 2020, 572: 22–30

    Article  CAS  Google Scholar 

  34. Xiao X, Gao Y, Zhang L, et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater, 2020, 32: 2003082

    Article  CAS  Google Scholar 

  35. Wu B, Zhang L, Jiang B, et al. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew Chem Int Ed, 2021, 60: 4815–4822

    Article  CAS  Google Scholar 

  36. Hu J, Chen C, Hu T, et al. Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C3N4 as an efficient photocatalyst for Fenton-like cascade water purification. J Mater Chem A, 2020, 8: 19484–19492

    Article  CAS  Google Scholar 

  37. Shao Y, Hu J, Yang T, et al. Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon, 2022, 190: 337–347

    Article  CAS  Google Scholar 

  38. Wu S, Yu H, Chen S, et al. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal, 2020, 10: 14380–14389

    Article  CAS  Google Scholar 

  39. Wang S, Wang Y, Zhang SL, et al. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv Mater, 2019, 31: 1903404

    Article  CAS  Google Scholar 

  40. Zhang S, Du M, Xing Z, et al. Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Appl Catal B-Environ, 2020, 262: 118202

    Article  CAS  Google Scholar 

  41. Zhu K, Zhang M, Feng X, et al. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation. Appl Catal B-Environ, 2020, 268: 118434

    Article  CAS  Google Scholar 

  42. Shao L, Jiang D, Xiao P, et al. Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Appl Catal B-Environ, 2016, 198: 200–210

    Article  CAS  Google Scholar 

  43. He F, Zhu B, Cheng B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ, 2020, 272: 119006

    Article  CAS  Google Scholar 

  44. Jin J, Jiang H, Yang Q, et al. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nat Commun, 2020, 11: 842

    Article  CAS  Google Scholar 

  45. Li L, Liang J, Qin L, et al. In situ growth of a p-type CuSCN/Cu2O heterojunction to enhance charge transport and suppress charge recombination. J Mater Chem C, 2019, 7: 6872–6878

    Article  CAS  Google Scholar 

  46. Eftekharinia B, Moshaii A, Dabirian A, et al. Optimization of charge transport in a Co-Pi modified hematite thin film produced by scalable electron beam evaporation for photoelectrochemical water oxidation. J Mater Chem A, 2017, 5: 3412–3424

    Article  CAS  Google Scholar 

  47. Liu Z, Wang L, Yu X, et al. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p-n heterojunction. Adv Funct Mater, 2019, 29: 1807279

    Article  CAS  Google Scholar 

  48. Pesqueira JFJR, Pereira MFR, Silva AMT. A life cycle assessment of solar-based treatments (H2O2, TiO2 photocatalysis, circumneutral photo-fenton) for the removal of organic micropollutants. Sci Total Environ, 2021, 761: 143258

    Article  CAS  Google Scholar 

  49. Zhang P, Tong Y, Liu Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew Chem Int Ed, 2020, 59: 16209–16217

    Article  CAS  Google Scholar 

  50. Cai T, Chang Q, Liu B, et al. Triggering photocatalytic activity of carbon dot-based nanocomposites by a self-supplying peroxide. J Mater Chem A, 2021, 9: 8991–8997

    Article  CAS  Google Scholar 

  51. Li F, Li N, Xue C, et al. A Cu2O-CdS-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chem Eng J, 2020, 382: 122484

    Article  CAS  Google Scholar 

  52. Li F, Chang Q, Li N, et al. Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity. Chem Eng J, 2020, 394: 125045

    Article  CAS  Google Scholar 

  53. Li Z, Chang Q, Xue C, et al. Boosting photocatalytic activity through in-situ phase transformation of bismuth-based compounds on carbon dots and quantification analysis of intrinsically reactive species in photocatalysis. Carbon, 2020, 165: 175–184

    Article  CAS  Google Scholar 

  54. Zheng Y, Yu Z, Ou H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 2018, 28: 1705407

    Article  Google Scholar 

  55. Zhang W, Zhao S, Xing Y, et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem Eng J, 2022, 442: 136151

    Article  CAS  Google Scholar 

  56. Han X, Chang Q, Li N, et al. In-situ incorporation of carbon dots into mesoporous nickel boride for regulating photocatalytic activities. Carbon, 2018, 137: 484–492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Fund of Heilongjiang Province (JQ 2020B002), Guangxi Science and Technology Base and Talent Special Project (AD21075001), and the Reform and Development Fund Project of Local University supported by the Central Government.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang J, Guo C and Jiang B designed and performed the experiments and wrote the paper; Li Y, Wan J and Zheng B revised the manuscript; Wang J and Guo C performed part of the experimental characterizations; Jiang Y and Li Y provided the experiment guidance. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bing Zheng  (郑冰), Yuxin Li  (李玉鑫) or Baojiang Jiang  (蒋保江).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Junxia Wang is now a postgraduate at the School of Chemistry and Materials Science, Heilongjiang University. Her current research interests include photocatalytic materials.

Yuxin Li received his BE degree in pharmaceutical engineering in 2007 and MSc degree in organic chemistry in 2010 from Heilongjiang University. He then received his PhD degree in materials science and technology from Harbin Institute of Technology in 2014. Then he joined the School of Chemistry and Materials Science, Heilongjiang University. His research interest covers photocatalytic materials.

Baojiang Jiang received his BSc degree in 2001 from Heilongjiang University, China. In 2012, he received his PhD degree from Harbin Engineering University, China. He became a full professor in 2016 at Heilongjiang University. His recent research interests include organic/inorganic semiconductor photocatalytic materials for renewable clean energy and environmental protection applications.

Electronic supplementary material

40843_2022_2218_MOESM1_ESM.pdf

Highly Efficient Photocatalytic H2O2 Production by Tubular g-C3N4/ZnIn2S4 Nanosheet Heterojunction via Improved Charge Separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Guo, C., Jiang, Y. et al. Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation. Sci. China Mater. 66, 1053–1061 (2023). https://doi.org/10.1007/s40843-022-2218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2218-7

Keywords

Navigation