Skip to main content
Log in

Flexible perovskite light-emitting diodes: Progress, challenges and perspective

柔性钙钛矿发光二极管: 进展, 挑战与展望

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Metal halide perovskites with excellent optoelectronic properties and good ductile properties have emerged as promising materials suitable for flexible optoelectronics that can be integrated into portable and wearable display devices, showing great potential for the next generation displays and lighting. Currently, encouraging progress has been witnessed in the field of flexible perovskite light-emitting diodes (PeLEDs), with maximal external quantum efficiencies (EQEs) of over 28%. Herein, we summarize the major breakthroughs in recent years, with the aim of providing a comprehensive review and facilitating the further development of flexible PeLEDs. In addition, the main challenges that hinder the performance and commercialization of flexible PeLED devices are discussed. Finally, a brief perspective and conclusion toward the future opportunities and applications of flexible PeLEDs are provided.

摘要

金属卤化物钙钛矿具有优异的光电性能和良好的延展性, 是一种很有前途的适合于柔性光电子器件的材料, 并且可以集成到便携式和可穿戴式的显示设备中, 在下一代显示和照明方面展现出巨大的潜力. 目前, 柔性钙钛矿发光二极管领域已经取得了令人鼓舞的进展, 最大外量子效率已经超过28%. 在此, 我们总结了近年来在柔性钙钛矿发光二极管领域取得的主要突破, 旨在提供一个全面的回顾, 以促进柔性钙钛矿发光二极管的进一步发展. 此外, 我们还讨论了阻碍柔性钙钛矿发光二极管器件性能和商业化的主要挑战. 最后, 我们对柔性钙钛矿发光二极管的未来机遇和应用前景进行了展望和总结.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim YH, Cho H, Lee TW. Metal halide perovskite light emitters. Proc Natl Acad Sci USA, 2016, 113: 11694–11702

    Article  CAS  Google Scholar 

  2. Liu XK, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2021, 20: 10–21

    Article  CAS  Google Scholar 

  3. Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photon, 2016, 10: 295–302

    Article  CAS  Google Scholar 

  4. Service RF. Perovskite LEDs begin to shine. Science, 2019, 364: 918

    Article  CAS  Google Scholar 

  5. Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692

    Article  CAS  Google Scholar 

  6. Chu Z, Ye Q, Zhao Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv Mater, 2021, 33: 2007169

    Article  CAS  Google Scholar 

  7. Ma D, Lin K, Dong Y, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599: 594–598

    Article  CAS  Google Scholar 

  8. Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562: 245–248

    Article  CAS  Google Scholar 

  9. Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562: 249–253

    Article  CAS  Google Scholar 

  10. Liu Y, Dong Y, Zhu T, et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J Am Chem Soc, 2021, 143: 15606–15615

    Article  CAS  Google Scholar 

  11. Liu Z, Qiu W, Peng X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv Mater, 2021, 33: 2103268

    Article  CAS  Google Scholar 

  12. Yuan Z, Miao Y, Hu Z, et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat Commun, 2019, 10: 2818

    Article  Google Scholar 

  13. Jia P, Lu M, Sun S, et al. Recent advances in flexible perovskite light-emitting diodes. Adv Mater Interfaces, 2021, 8: 2100441

    Article  Google Scholar 

  14. Chen H, Wang H, Wu J, et al. Flexible optoelectronic devices based on metal halide perovskites. Nano Res, 2020, 13: 1997–2018

    Article  CAS  Google Scholar 

  15. Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3−BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater, 2014, 2: 081801

    Article  Google Scholar 

  16. Kim YH, Cho H, Heo JH, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27: 1248–1254

    Article  CAS  Google Scholar 

  17. Seo HK, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv Mater, 2017, 29: 1605587

    Article  Google Scholar 

  18. Cheng LP, Huang JS, Shen Y, et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control. Adv Opt Mater, 2018, 7: 1801534

    Article  Google Scholar 

  19. Zhao X, Tan ZK. Large-area near-infrared perovskite light-emitting diodes. Nat Photonics, 2020, 14: 215–218

    Article  CAS  Google Scholar 

  20. Shen Y, Li MN, Li Y, et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, 14: 6107–6116

    Article  CAS  Google Scholar 

  21. Veldhuis SA, Boix PP, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 2016, 28: 6804–6834

    Article  CAS  Google Scholar 

  22. Zhao H, Liu G, Zhang J, et al. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. J Display Technol, 2013, 9: 212–225

    Article  CAS  Google Scholar 

  23. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696

    Article  CAS  Google Scholar 

  24. Ravi VK, Markad GB, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 2016, 1: 665–671

    Article  CAS  Google Scholar 

  25. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10: 391–402

    Article  CAS  Google Scholar 

  26. Quan LN, Rand BP, Friend RH, et al. Perovskites for next-generation optical sources. Chem Rev, 2019, 119: 7444–7477

    Article  CAS  Google Scholar 

  27. Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14: 477–485

    Article  CAS  Google Scholar 

  28. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  29. Yang WF, Igbari F, Lou YH, et al. Tin halide perovskites: Progress and challenges. Adv Energy Mater, 2019, 10: 1902584

    Article  Google Scholar 

  30. Jang DM, Park K, Kim DH, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett, 2015, 15: 5191–5199

    Article  CAS  Google Scholar 

  31. Manser JS, Christians JA, Kamat PV. Intriguing optoelectronic properties of metal halide perovskites. Chem Rev, 2016, 116: 12956–13008

    Article  CAS  Google Scholar 

  32. Umebayashi T, Asai K, Kondo T, et al. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B, 2003, 67: 155405

    Article  Google Scholar 

  33. Brandt RE, Stevanović V, Ginley DS, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun, 2015, 5: 265–275

    Article  CAS  Google Scholar 

  34. Zou Y, Cai L, Song T, et al. Recent progress on patterning strategies for perovskite light-emitting diodes toward a full-color display prototype. Small Sci, 2021, 1: 2000050

    Article  CAS  Google Scholar 

  35. Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 2016, 10: 699–704

    Article  CAS  Google Scholar 

  36. Braly IL, deQuilettes DW, Pazos-Outón LM, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat Photon, 2018, 12: 355–361

    Article  CAS  Google Scholar 

  37. Xiao P, Yu Y, Cheng J, et al. Advances in perovskite light-emitting diodes possessing improved lifetime. Nanomaterials, 2021, 11: 103

    Article  CAS  Google Scholar 

  38. Lim KG, Han TH, Lee TW. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ Sci, 2021, 14: 2009–2035

    Article  CAS  Google Scholar 

  39. Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photon, 2015, 9: 679–686

    Article  CAS  Google Scholar 

  40. Rakita Y, Cohen SR, Kedem NK, et al. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun, 2015, 5: 623–629

    Article  CAS  Google Scholar 

  41. Reyes-Martinez MA, Abdelhady AL, Saidaminov MI, et al. Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals. Adv Mater, 2017, 29: 1606556

    Article  Google Scholar 

  42. Sun S, Isikgor FH, Deng Z, et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem, 2017, 10: 3740–3745

    Article  CAS  Google Scholar 

  43. Yu J, Wang M, Lin S. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10: 11044–11057

    Article  CAS  Google Scholar 

  44. Yang D, Zhao B, Yang T, et al. Toward stable and efficient perovskite light-emitting diodes. Adv Funct Mater, 2022, 32: 2109495

    Article  CAS  Google Scholar 

  45. Adjokatse S, Fang HH, Loi MA. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater Today, 2017, 20: 413–424

    Article  CAS  Google Scholar 

  46. Zheng W, Lin R, Zhang Z, et al. An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake. Nanoscale, 2017, 9: 12718–12726

    Article  CAS  Google Scholar 

  47. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano, 2017, 11: 5992–6003

    Article  CAS  Google Scholar 

  48. Chou SY, Ma R, Li Y, et al. Transparent perovskite light-emitting touch-responsive device. ACS Nano, 2017, 11: 11368–11375

    Article  CAS  Google Scholar 

  49. Bade SGR, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2015, 10: 1795–1801

    Article  Google Scholar 

  50. Yu JC, Park JH, Lee SY, et al. Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale, 2019, 11: 1505–1514

    Article  CAS  Google Scholar 

  51. Wang J, Wang N, Jin Y, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater, 2015, 27: 2311–2316

    Article  CAS  Google Scholar 

  52. Yu JC, Kim DB, Jung ED, et al. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 2016, 8: 7036–7042

    Article  CAS  Google Scholar 

  53. Yu JC, Lee AY, Kim DB, et al. Enhancing the performance and stability of perovskite nanocrystal light-emitting diodes with a polymer matrix. Adv Mater Technol, 2017, 2: 1700003

    Article  Google Scholar 

  54. Chen C, Han TH, Tan S, et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett, 2020, 20: 4673–4680

    Article  CAS  Google Scholar 

  55. Jung DH, Park JH, Lee HE, et al. Flash-induced ultrafast re-crystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61: 236–244

    Article  CAS  Google Scholar 

  56. Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225

    Article  CAS  Google Scholar 

  57. Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9: 570

    Article  Google Scholar 

  58. Song L, Guo X, Hu Y, et al. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J Phys Chem Lett, 2017, 8: 4148–4154

    Article  CAS  Google Scholar 

  59. Dulkeith E, Ringler M, Klar TA, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett, 2005, 5: 585–589

    Article  CAS  Google Scholar 

  60. Samiee M, Konduri S, Ganapathy B, et al. Defect density and dielectric constant in perovskite solar cells. Appl Phys Lett, 2014, 105: 153502

    Article  Google Scholar 

  61. Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys, 2015, 11: 582–587

    Article  CAS  Google Scholar 

  62. Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  CAS  Google Scholar 

  63. Kavanagh LD, Schardt AW, Roelof EC. Quasi-two-dimensional perovskite light emitting diodes for bright future. Light Sci Appl, 2021, 10: 86

    Article  Google Scholar 

  64. Han TH, Lee JW, Choi YJ, et al. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv Mater, 2020, 32: 1905674

    Article  CAS  Google Scholar 

  65. Zhang L, Sun C, He T, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10: 61

    Article  CAS  Google Scholar 

  66. Zhang J, Wang L, Zhang X, et al. Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Mater Today, 2021, 51: 222–246

    Article  CAS  Google Scholar 

  67. Kumagai M, Takagahara T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys Rev B, 1989, 40: 12359–12381

    Article  CAS  Google Scholar 

  68. Zhang S, Yi C, Wang N, et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv Mater, 2017, 29: 1606600

    Article  Google Scholar 

  69. Yuan M, Quan LN, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotech, 2016, 11: 872–877

    Article  CAS  Google Scholar 

  70. Quan LN, Yuan M, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138: 2649–2655

    Article  CAS  Google Scholar 

  71. Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515: 96–99

    Article  CAS  Google Scholar 

  72. Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10: 6897–6904

    Article  CAS  Google Scholar 

  73. Kumar S, Jagielski J, Kallikounis N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett, 2017, 17: 5277–5284

    Article  CAS  Google Scholar 

  74. Kim YH, Kim S, Kakekhani A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat Photonics, 2021, 15: 148–155

    Article  CAS  Google Scholar 

  75. Miao Y, Cheng L, Zou W, et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci Appl, 2020, 9: 89

    Article  CAS  Google Scholar 

  76. Zhao L, Rolston N, Lee KM, et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices. Adv Funct Mater, 2018, 28: 1802060

    Article  Google Scholar 

  77. Zhang D, Zhang Q, Ren B, et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat Photon, 2022, 16: 284–290

    Article  CAS  Google Scholar 

  78. Richter JM, Abdi-Jalebi M, Sadhanala A, et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat Commun, 2016, 7: 13941

    Article  CAS  Google Scholar 

  79. Kam M, Zhu Y, Zhang D, et al. Efficient mixed-cation mixed-halide perovskite solar cells by all-vacuum sequential deposition using metal oxide electron transport layer. Sol RRL, 2019, 3: 1900050

    Article  Google Scholar 

  80. Li J, Yu Q, Gan L, et al. Perovskite light-emitting devices with a metal-insulator-semiconductor structure and carrier tunnelling. J Mater Chem C, 2017, 5: 7715–7719

    Article  CAS  Google Scholar 

  81. Xu L, Li J, Cai B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat Commun, 2020, 11: 3902

    Article  CAS  Google Scholar 

  82. Koscher BA, Swabeck JK, Bronstein ND, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J Am Chem Soc, 2017, 139: 6566–6569

    Article  CAS  Google Scholar 

  83. Liu F, Zhang Y, Ding C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 2017, 11: 10373–10383

    Article  CAS  Google Scholar 

  84. Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27: 7162–7167

    Article  CAS  Google Scholar 

  85. Shi J, Li F, Jin Y, et al. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew Chem, 2020, 132: 22414–22421

    Article  Google Scholar 

  86. Li YF, Chou SY, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater, 2019, 31: 1807516

    Article  Google Scholar 

  87. Wang HC, Bao Z, Tsai HY, et al. Perovskite quantum dots and their application in light-emitting diodes. Small, 2018, 14: 1702433

    Article  Google Scholar 

  88. Zhao F, Chen D, Chang S, et al. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire-polymer composite electrode. J Mater Chem C, 2017, 5: 531–538

    Article  CAS  Google Scholar 

  89. Hu L, Zhao Q, Huang S, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun, 2021, 12: 466

    Article  CAS  Google Scholar 

  90. Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31: 1901644

    Article  Google Scholar 

  91. Li YF, Feng J, Sun HB. Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11: 19119–19139

    Article  CAS  Google Scholar 

  92. Dong Y, Wang YK, Yuan F, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 2020, 15: 668–674

    Article  CAS  Google Scholar 

  93. Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photon, 2018, 12: 681–687

    Article  CAS  Google Scholar 

  94. Liu Y, Li Z, Xu J, et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J Am Chem Soc, 2022, 144: 4009–4016

    Article  CAS  Google Scholar 

  95. Huang H, Zhao F, Liu L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl Mater Interfaces, 2015, 7: 28128–28133

    Article  CAS  Google Scholar 

  96. Li Y, Lv Y, Guo Z, et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl Mater Interfaces, 2018, 10: 15888–15894

    Article  CAS  Google Scholar 

  97. Du P, Li J, Wang L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat Commun, 2021, 12: 4751

    Article  CAS  Google Scholar 

  98. Peng X, Schlamp MC, Kadavanich AV, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc, 1997, 119: 7019–7029

    Article  CAS  Google Scholar 

  99. Xu J, Huang W, Li P, et al. Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: Kinetics, enhanced oscillator strength, and application in light-emitting diodes. Adv Mater, 2017, 29: 1703703

    Article  Google Scholar 

  100. Tan Y, Li R, Xu H, et al. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv Funct Mater, 2019, 29: 1900730

    Article  Google Scholar 

  101. Quan LN, Quintero-Bermudez R, Voznyy O, et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv Mater, 2017, 29: 1605945

    Article  Google Scholar 

  102. Chen Z, Li Z, Zhang C, et al. Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv Mater, 2018, 30: 1801370

    Article  Google Scholar 

  103. Yan F, Demir HV. Vacuum-evaporated lead halide perovskite LEDs. Opt Mater Express, 2022, 12: 256–271

    Article  CAS  Google Scholar 

  104. Hu Y, Wang Q, Shi YL, et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J Mater Chem C, 2017, 5: 8144–8149

    Article  CAS  Google Scholar 

  105. Li J, Du P, Li S, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv Funct Mater, 2019, 29: 1903607

    Article  CAS  Google Scholar 

  106. Lee SY, Kim SH, Nam YS, et al. Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett, 2019, 19: 971–976

    Article  CAS  Google Scholar 

  107. Rolston N, Printz AD, Tracy JM, et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv Energy Mater, 2017, 8: 1702116

    Article  Google Scholar 

  108. Lu J, Guan X, Li Y, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater, 2021, 33: 2104414

    Article  CAS  Google Scholar 

  109. Chen Y, Sun Y, Peng J, et al. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater, 2018, 30: 1703487

    Article  Google Scholar 

  110. Zhang Q, Zhang D, Fu Y, et al. Light out-coupling management in perovskite LEDs—What can we learn from the past? Adv Funct Mater, 2020, 30: 2002570

    Article  CAS  Google Scholar 

  111. Stranks SD, Hoye RLZ, Di D, et al. The physics of light emission in halide perovskite devices. Adv Mater, 2019, 31: 1803336

    Article  CAS  Google Scholar 

  112. Zhang Q, Tavakoli MM, Gu L, et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat Commun, 2019, 10: 727

    Article  Google Scholar 

  113. Yang JP, Bao QY, Xu ZQ, et al. Light out-coupling enhancement of organic light-emitting devices with microlens array. Appl Phys Lett, 2010, 97: 223303

    Article  Google Scholar 

  114. Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459: 234–238

    Article  CAS  Google Scholar 

  115. Jeon S, Zhao L, Jung YJ, et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small, 2019, 15: 1900135

    Article  Google Scholar 

  116. Shen Y, Cheng LP, Li YQ, et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv Mater, 2019, 31: 1901517

    Article  Google Scholar 

  117. Liu Y, Zhang L, Chen S, et al. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small, 2021, 17: 2101477

    Article  CAS  Google Scholar 

  118. Groenendaal L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv Mater, 2000, 12: 481–494

    Article  CAS  Google Scholar 

  119. Crispin X, Marciniak S, Osikowicz W, et al. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. J Polym Sci B Polym Phys, 2003, 41: 2561–2583

    Article  CAS  Google Scholar 

  120. Yang Y, Deng H, Fu Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater Chem Front, 2020, 4: 3130–3152

    Article  CAS  Google Scholar 

  121. Wang Z, Li Z, Zhou D, et al. Low turn-on voltage perovskite light-emitting diodes with methanol treated PEDOT:PSS as hole transport layer. Appl Phys Lett, 2017, 111: 233304

    Article  Google Scholar 

  122. Lee S, Kim DB, Hamilton I, et al. Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv Sci, 2018, 5: 1801350

    Article  Google Scholar 

  123. Kim H, Ra HN, Kim JS, et al. Improved performance of flexible perovskite light-emitting diodes with modified PEDOT:PSS hole transport layer. J Industrial Eng Chem, 2020, 90: 117–121

    Article  CAS  Google Scholar 

  124. Lee SY, Nam YS, Yu JC, et al. Highly efficient flexible perovskite light-emitting diodes using the modified PEDOT:PSS hole transport layer and polymer-silver nanowire composite electrode. ACS Appl Mater Interfaces, 2019, 11: 39274–39282

    Article  CAS  Google Scholar 

  125. Tengstedt C, Osikowicz W, Salaneck WR, et al. Fermi-level pinning at conjugated polymer interfaces. Appl Phys Lett, 2006, 88: 053502

    Article  Google Scholar 

  126. Tan ZK, Vaynzof Y, Credgington D, et al. In-situ switching from barrier-limited to ohmic anodes for efficient organic optoelectronics. Adv Funct Mater, 2014, 24: 3051–3058

    Article  CAS  Google Scholar 

  127. Zeng J, Qi Y, Liu Y, et al. ZnO-based electron-transporting layers for perovskite light-emitting diodes: Controlling the interfacial reactions. J Phys Chem Lett, 2022, 13: 694–703

    Article  CAS  Google Scholar 

  128. Li W, Xu YX, Wang D, et al. Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Org Electron, 2018, 57: 60–67

    Article  CAS  Google Scholar 

  129. Zhuang S, Ma X, Hu D, et al. Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceramics Int, 2018, 44: 4685–4688

    Article  CAS  Google Scholar 

  130. Qasim K, Wang B, Zhang Y, et al. Solution-processed extremely efficient multicolor perovskite light-emitting diodes utilizing doped electron transport layer. Adv Funct Mater, 2017, 27: 1606874

    Article  Google Scholar 

  131. Tang C, Shen X, Wu X, et al. Optimizing the performance of perovskite nanocrystal LEDs utilizing cobalt doping on a ZnO electron transport layer. J Phys Chem Lett, 2021, 12: 10112–10119

    Article  CAS  Google Scholar 

  132. Lu P, Wu J, Shen X, et al. ZnO-Ti3C2 MXene electron transport layer for high external quantum efficiency perovskite nanocrystal light-emitting diodes. Adv Sci, 2020, 7: 2001562

    Article  CAS  Google Scholar 

  133. Liu B, Wang L, Gu H, et al. Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer. Adv Opt Mater, 2018, 6: 1800220

    Article  Google Scholar 

  134. Cai L, Yang F, Xu Y, et al. Dual functionalization of electron transport layer via tailoring molecular structure for high-performance perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12: 37346–37353

    Article  CAS  Google Scholar 

  135. Fang T, Wang T, Li X, et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci Bull, 2021, 66: 36–43

    Article  CAS  Google Scholar 

  136. Sun S, Lu M, Guo J, et al. Double electron transport layer and optimized CsPbI3 nanocrystal emitter for efficient perovskite light-emitting diodes. J Phys Chem C, 2020, 124: 28277–28284

    Article  CAS  Google Scholar 

  137. Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24: 3326–3332

    Article  CAS  Google Scholar 

  138. Park H, Rowehl JA, Kim KK, et al. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21: 505204

    Article  Google Scholar 

  139. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech, 2008, 3: 270–274

    Article  CAS  Google Scholar 

  140. Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191–1196

    Article  CAS  Google Scholar 

  141. Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305: 1273–1276

    Article  CAS  Google Scholar 

  142. Zhang M, Fang S, Zakhidov AA, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309: 1215–1219

    Article  CAS  Google Scholar 

  143. Zhang Q, Lu Y, Liu Z, et al. Highly efficient organic-inorganic hybrid perovskite quantum dot/nanocrystal light-emitting diodes using graphene electrode and modified PEDOT:PSS. Org Electron, 2019, 72: 30–38

    Article  CAS  Google Scholar 

  144. Jeong SH, Woo SH, Han TH, et al. Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Mater, 2017, 9: e411

    Article  CAS  Google Scholar 

  145. Kim N, Kee S, Lee SH, et al. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater, 2014, 26: 2268–2272

    Article  CAS  Google Scholar 

  146. Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem, 2005, 15: 2077

    Article  CAS  Google Scholar 

  147. Kim GH, Shao L, Zhang K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater, 2013, 12: 719–723

    Article  CAS  Google Scholar 

  148. Wegner G. Polymers with metal-like conductivity—A review of their synthesis, structure and properties. Angew Chem Int Ed Engl, 1981, 20: 361–381

    Article  Google Scholar 

  149. Murgatroyd PN. Theory of space-charge-limited current enhanced by Frenkel effect. J Phys D-Appl Phys, 1970, 3: 151–156

    Article  Google Scholar 

  150. Campbell IH, Smith DL, Neef CJ, et al. Consistent time-of-flight mobility measurements and polymer light-emitting diode current-voltage characteristics. Appl Phys Lett, 1999, 74: 2809–2811

    Article  CAS  Google Scholar 

  151. Jiang DH, Liao YC, Cho CJ, et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl Mater Interfaces, 2020, 12: 14408–14415

    Article  CAS  Google Scholar 

  152. Lu M, Wu H, Zhang X, et al. Highly flexible CsPbI3 perovskite nanocrystal light-emitting diodes. ChemNanoMat, 2018, 5: 313–317

    Article  Google Scholar 

  153. Li Y, Meng L, Yang YM, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun, 2016, 7: 10214

    Article  CAS  Google Scholar 

  154. Kim T, Kim JH, Park JW. Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity. Solid-State Electron, 2020, 165: 107749

    Article  CAS  Google Scholar 

  155. Payandeh M, Ahmadi V, Roghabadi FA, et al. High-brightness perovskite light-emitting diodes using a printable silver microflake contact. ACS Appl Mater Interfaces, 2020, 12: 11428–11437

    Article  CAS  Google Scholar 

  156. Bi S, Zhao W, Sun Y, et al. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Adv, 2021, 3: 6659–6668

    Article  CAS  Google Scholar 

  157. Zhao J, Lo LW, Wan H, et al. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv Mater, 2021, 33: 2102095

    Article  CAS  Google Scholar 

  158. Fan Z, Chen Y, Lin Y, et al. Preface to the special issue on flexible energy devices. J Semicond, 2021, 42: 100101

    Article  Google Scholar 

  159. Zou Y, Yuan Z, Bai S, et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater Today Nano, 2019, 5: 100028

    Article  Google Scholar 

  160. Zhang D, Fu Y, Zhan H, et al. Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light Sci Appl, 2022, 11: 69

    Article  CAS  Google Scholar 

  161. Zhang J, Zhang W, Cheng HM, et al. Critical review of recent progress of flexible perovskite solar cells. Mater Today, 2020, 39: 66–88

    Article  Google Scholar 

  162. Chen CH, Su ZH, Lou YH, et al. Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv Mater, 2022, 34: 2200320

    Article  CAS  Google Scholar 

  163. Zhang H, Rogers JA. Recent advances in flexible inorganic light emitting diodes: From materials design to integrated optoelectronic platforms. Adv Opt Mater, 2019, 7: 1800936

    Article  Google Scholar 

  164. Hassan Y, Park JH, Crawford ML, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591: 72–77

    Article  CAS  Google Scholar 

  165. Zhang K, Zhu N, Zhang M, et al. Opportunities and challenges in perovskite LED commercialization. J Mater Chem C, 2021, 9: 3795–3799

    Article  CAS  Google Scholar 

  166. Wang HC, Wang W, Tang AC, et al. High-performance CsPb1−xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew Chem Int Ed, 2017, 56: 13650–13654

    Article  CAS  Google Scholar 

  167. Qiu W, Xiao Z, Roh K, et al. Mixed lead-tin halide perovskites for efficient and wavelength-tunable near-infrared light-emitting diodes. Adv Mater, 2019, 31: 1806105

    Article  Google Scholar 

  168. Lu M, Zhang X, Zhang Y, et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv Mater, 2018, 30: 1804691

    Article  Google Scholar 

  169. Yao JS, Ge J, Wang KH, et al. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J Am Chem Soc, 2019, 141: 2069–2079

    Article  CAS  Google Scholar 

  170. Lu M, Guo J, Sun S, et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett, 2020, 20: 2829–2836

    Article  CAS  Google Scholar 

  171. Shen X, Zhang Y, Kershaw SV, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett, 2019, 19: 1552–1559

    Article  CAS  Google Scholar 

  172. Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc, 2017, 139: 11443–11450

    Article  CAS  Google Scholar 

  173. Hou S, Gangishetty MK, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2: 2421–2433

    Article  CAS  Google Scholar 

  174. Chen Z, Zhou B, Yuan J, et al. Cu2+-doped CsPbI3 nanocrystals with enhanced stability for light-emitting diodes. J Phys Chem Lett, 2021, 12: 3038–3045

    Article  CAS  Google Scholar 

  175. Liu M, Jiang N, Huang H, et al. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices. Chem Eng J, 2021, 413: 127547

    Article  CAS  Google Scholar 

  176. Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10: 5633

    Article  CAS  Google Scholar 

  177. Yao JS, Ge J, Han BN, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J Am Chem Soc, 2018, 140: 3626–3634

    Article  CAS  Google Scholar 

  178. Qiu L, Ono LK, Qi Y. Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology. Mater Today Energy, 2018, 7: 169–189

    Article  Google Scholar 

  179. Tang G, Yan F. Flexible perovskite solar cells: Materials and devices. J Semicond, 2021, 42: 101606

    Article  CAS  Google Scholar 

  180. Bhaumik S, Kar MR, Thorat BN, et al. Vacuum-processed metal halide perovskite light-emitting diodes: Prospects and challenges. ChemPlusChem, 2021, 86: 558–573

    Article  CAS  Google Scholar 

  181. Howard IA, Abzieher T, Hossain IM, et al. Coated and printed perovskites for photovoltaic applications. Adv Mater, 2019, 31: 1806702

    Article  Google Scholar 

  182. Du P, Gao L, Tang J. Focus on performance of perovskite light-emitting diodes. Front Optoelectron, 2020, 13: 235–245

    Article  Google Scholar 

  183. Wang J, Li D, Mu L, et al. Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2021, 13: 41773–41781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073197 and 62075148), the Natural Science Foundation of Jiangsu Province (BK20201413 and BK20211314), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, and Soochow University Tang Scholar.

Author information

Authors and Affiliations

Authors

Contributions

Wang JT and Wang ZK conceived the idea for this review. Wang JT collected the references, organized the images, and wrote the entire manuscript; Wang SZ, Zhou YH, and Lou YH modified the manuscript and participated in the discussion; all the authors contributed to the general discussion. Lou YH and Wang ZK supervised the project.

Corresponding authors

Correspondence to Yan-Hui Lou  (娄艳辉) or Zhao-Kui Wang  (王照奎).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Jin-Tao Wang is pursuing his bachelor of engineering degree at the College of Nano Science & Technology (CNST), Soochow University, China. In 2020, he joined the research group of Prof. Zhao-Kui Wang as an undergraduate trainee for scientific research training at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University. His primary research interest is perovskite light-emitting diodes.

Yan-Hui Lou received her PhD degree in nano and novel matter science from the University of Toyama, Japan, in 2012. After working at the University of Toyama as a Japan Society for the Promotion of Science (JSPS) research fellow from 2012 to 2014, she joined Soochow Institute for Energy and Materials Innovations, Soochow University, as an associate professor. Since 2021, she has been a full professor at Soochow University. Her main research interest focuses on organic and inorganic/organic hybrid materials for application in solar cells.

Zhao-Kui Wang received his PhD degree in nano and novel matter science from the University of Toyama, Japan, in 2011. After working at the University of Toyama as a JSPS research fellow from 2011 to 2013, he joined the Institute of FUNSOM, Soochow University, as an associate professor. Since 2017, he has been a full professor at Soochow University. His main research interests lie in organic and inorganic/organic hybrid materials and devices, focusing on solar cells and light-emitting diodes (LEDs).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JT., Wang, SZ., Zhou, YH. et al. Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Sci. China Mater. 66, 1–21 (2023). https://doi.org/10.1007/s40843-022-2197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2197-4

Keywords

Navigation