Skip to main content
Log in

Ultrahigh-power iron oxysulfide thin films for microbatteries

用于微电池的超高功率密度铁氧硫化物薄膜

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Areal power density is one of the core indicators determining how large areas a microbattery need to occupy when integrated directly with microelectronic devices for the Internet of Things. Unfortunately, the low power density of microbatteries hinders their applications, because microelectronic devices only provide finite areas for integration. Herein, we show that sputtered iron oxysulfide (FeOxSy) thin films subjected to in situ plasma pretreatment display ultrahigh power density. This in situ plasma pretreatment can be regarded as a universal interface optimization strategy for suppressing mechanical degradation upon extended cycling. The synergistic effects of high structural integrity (robust interfacial adhesiveness and stress-relieving islands), perfect electrochemical reversibility, and near-surface charge exchanges (pseudocapacitive lithium storage mechanism) result in extremely high power density and stable cycling performance. The pretreated FeOxSy thin films can output an areal power density as high as 14.6 mW cm−2 and a considerable volumetric energy density of 291 µW h cm−2 µm−1. Such a highpower density constitutes a new state-of-the-art level for sputtered thin-film materials with comparative areal capacity. This work provides an efficient and simple pretreatment method for achieving ultrahigh-power and stable thin-film electrodes for microbatteries.

摘要

作为微电池的核心指标之一, 面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前, 由于微电子器件尺寸有限, 微电池的实际应用受到低面积功率密度的限制. 本文研究发现, 经过原位等离子体预处理衬底后, 溅射的铁氧硫化物薄膜(FeOxSy)具备超高功率特性. 这种原位等离子体预处理可作为一种通用的界面优化策略来抑制长循环过程中的机械衰变. 该正极薄膜展现出极高的功率密度和稳定的循环性能, 这是由其高度的结构完整性(强大的界面粘附性和应力释放的岛)、完美的电化学可逆性以及近表面电荷交换(赝电容锂存储机制)的协同作用导致的. 预处理的FeOxSy 薄膜可以输出高达14.6 mW cm−2的功率密度和291 μW h cm−2μm−1的体积能量密度.制备得到的正极薄膜的功率密度优于已报道的具有相当面积容量的溅射薄膜. 本工作提出了一种简单且高效的预处理方法来制备具有超高功率密度且稳定的微电池薄膜电极.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Y, Gonzalez-Rosillo JC, Balaish M, et al. Lithium-film ceramics for solid-state lithionic devices. Nat Rev Mater, 2020, 6: 313–331

    Article  Google Scholar 

  2. Pan S, Ren J, Fang X, et al. Integration: An effective strategy to develop multifunctional energy storage devices. Adv Energy Mater, 2016, 6: 1501867

    Article  Google Scholar 

  3. Zhu M, Schmidt OG. Tiny robots and sensors need tiny batteries—Here’s how to do it. Nature, 2021, 589: 195–197

    Article  CAS  Google Scholar 

  4. Lin J, Lin L, Qu S, et al. Promising electrode and electrolyte materials for high-energy-density thin-film lithium batteries. Energy Environ Mater, 2022, 5: 133–156

    Article  CAS  Google Scholar 

  5. Markit IHS. The Internet of Things: A movement, not a market. Critical IoT Insights, 2017, 1–9, https://cdn.ihs.com/www/pdf/IoT_ebook.pdf

  6. Kyeremateng NA, Hahn R. Attainable energy density of microbatteries. ACS Energy Lett, 2018, 3: 1172–1175

    Article  CAS  Google Scholar 

  7. Betz J, Bieker G, Meister P, et al. Theoretical versus practical energy: A plea for more transparency in the energy calculation of different rechargeable battery systems. Adv Energy Mater, 2018, 9: 1803170

    Article  Google Scholar 

  8. Pikul JH, Ning H. Powering the internet of things. Joule, 2018, 2: 1036–1038

    Article  Google Scholar 

  9. Albertus P, Anandan V, Ban C, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett, 2021, 6: 1399–1404

    Article  CAS  Google Scholar 

  10. Vlad A, Singh N, Galande C, et al. Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater, 2015, 5: 1402115

    Article  Google Scholar 

  11. Hwang S, Meng Q, Chen PF, et al. Strain coupling of conversion-type Fe3O4 thin films for lithium ion batteries. Angew Chem Int Ed, 2017, 56: 7813–7816

    Article  CAS  Google Scholar 

  12. Haftbaradaran H, Xiao X, Verbrugge MW, et al. Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J Power Sources, 2012, 206: 357–366

    Article  CAS  Google Scholar 

  13. Zhang S. Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. Comput Mater, 2017, 3: 7

    Article  Google Scholar 

  14. Li W, Deng L, Wang X, et al. Close-spaced thermally evaporated 3D Sb2Se3 film for high-rate and high-capacity lithium-ion storage. Nanoscale, 2021, 13: 9834–9842

    Article  CAS  Google Scholar 

  15. Susantyoko RA, Wang X, Sun L, et al. Influences of annealing on lithium-ion storage performance of thick germanium film anodes. Nano Energy, 2015, 12: 521–527

    Article  CAS  Google Scholar 

  16. Wang X, Sun L, Susantyoko RA, et al. Ultrahigh volumetric capacity lithium ion battery anodes with CNT-Si film. Nano Energy, 2014, 8: 71–77

    Article  CAS  Google Scholar 

  17. Wang X, Susantyoko RA, Fan Y, et al. Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. Small, 2014, 10: 2826–2829

    Article  CAS  Google Scholar 

  18. Hallot M, Demortière A, Roussel P, et al. Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities. Energy Storage Mater, 2018, 15: 396–406

    Article  Google Scholar 

  19. Glenneberg J, Kasiri G, Bardenhagen I, et al. Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions Nano Energy, 2019, 57: 549–557

    Article  CAS  Google Scholar 

  20. Song SW, Lee KC, Park HY. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J Power Sources, 2016, 328: 311–317

    Article  CAS  Google Scholar 

  21. Xia Q, Zhang Q, Sun S, et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv Mater, 2021, 33: 2003524

    Article  CAS  Google Scholar 

  22. Julien CM, Mauger A, Hussain OM. Sputtered LiCoO2 cathode materials for all-solid-state thin-film lithium microbatteries. Materials, 2019, 12: 2687

    Article  CAS  Google Scholar 

  23. Wang L, Wu Z, Zou J, et al. Li-free cathode materials for high energy density lithium batteries. Joule, 2019, 3: 2086–2102

    Article  CAS  Google Scholar 

  24. Yu SH, Feng X, Zhang N, et al. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc Chem Res, 2018, 51: 273–281

    Article  CAS  Google Scholar 

  25. Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170–E192

    Article  CAS  Google Scholar 

  26. Yersak TA, Macpherson HA, Kim SC, et al. Solid state enabled reversible four electron storage. Adv Energy Mater, 2013, 3: 120–127

    Article  CAS  Google Scholar 

  27. Zou J, Zhao J, Wang B, et al. Unraveling the reaction mechanism of FeS2 as a Li-ion battery cathode. ACS Appl Mater Interfaces, 2020, 12: 44850–44857

    Article  CAS  Google Scholar 

  28. Hu Z, Zhu Z, Cheng F, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8: 1309–1316

    Article  CAS  Google Scholar 

  29. Rickard D, Luther GW. Chemistry of iron sulfides. Chem Rev, 2007, 107: 514–562

    Article  CAS  Google Scholar 

  30. Wan H, Liu G, Li Y, et al. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries. ACS Nano, 2019, 13: 9551–9560

    Article  CAS  Google Scholar 

  31. Xie Y, Cao J, Wang X, et al. MOF-derived bifunctional Co0.85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium-sulfur batteries. Nano Lett, 2021, 21: 8579–8586

    Article  CAS  Google Scholar 

  32. Li SH, Wang XH, Xia XH, et al. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries. Electrochim Acta, 2017, 227: 217–224

    Article  CAS  Google Scholar 

  33. Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254: 2441–2449

    Article  CAS  Google Scholar 

  34. Morales C, Flores E, Yoda S, et al. An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition. Appl Surf Sci, 2019, 492: 651–660

    Article  CAS  Google Scholar 

  35. Pratt AR, Muir IJ, Nesbitt HW. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta, 1994, 58: 827–841

    Article  CAS  Google Scholar 

  36. von Oertzen GU, Skinner WM, Nesbitt HW. Ab initio and X-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity. Phys Rev B, 2005, 72: 235427

    Article  Google Scholar 

  37. Mwizerwa JP, Zhang Q, Han F, et al. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithiumsulfur batteries. ACS Appl Mater Interfaces, 2020, 12: 18519–18525

    Article  CAS  Google Scholar 

  38. Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin films of titanium oxysulfides. Surf Sci, 1991, 254: 81–89

    Article  CAS  Google Scholar 

  39. Sinha S, Ramasamy HV, Nandi DK, et al. Atomic layer deposited zinc oxysulfide anodes in Li-ion batteries: An efficient solution for electrochemical instability and low conductivity. J Mater Chem A, 2018, 6: 16515–16528

    Article  CAS  Google Scholar 

  40. Cras FL, Pecquenard B, Dubois V, et al. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: High performance and memory effect. Adv Energy Mater, 2015, 5: 1501061

    Article  Google Scholar 

  41. Thornton JA. Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J Vacuum Sci Tech, 1975, 12: 830–835

    Article  CAS  Google Scholar 

  42. Etula J, Lahtinen K, Wester N, et al. Room-temperature micropillar growth of lithium-titanate-carbon composite structures by self-biased direct current magnetron sputtering for lithium ion microbatteries. Adv Funct Mater, 2019, 29: 1904306

    Article  CAS  Google Scholar 

  43. Thornton JA. The microstructure of sputter-deposited coatings. J Vacuum Sci Tech A-Vacuum Surfs Films, 1986, 4: 3059–3065

    Article  CAS  Google Scholar 

  44. Nölle R, Beltrop K, Holtstiege F, et al. A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup. Mater Today, 2020, 32: 131–146

    Article  Google Scholar 

  45. Wang B, Bates JB, Hart FX, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J Electrochem Soc, 1996, 143: 3203–3213

    Article  CAS  Google Scholar 

  46. Liao CL, Lee YH, Yu HC, et al. Structure characterization and electrochemical properties of RF sputtered lithium nickel cobalt oxide thin films. Electrochim Acta, 2004, 50: 461–466

    Article  CAS  Google Scholar 

  47. Shi Q, Liu J, Hu R, et al. An amorphous wrapped nanorod LiV3O8 electrode with enhanced performance for lithium ion batteries. RSC Adv, 2012, 2: 7273–7278

    Article  CAS  Google Scholar 

  48. Yim H, Yeon Kong W, Chul Kim Y, et al. Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode thin film by RF sputtering for all-solid-state lithium battery. J Solid State Chem, 2012, 196: 288–292

    Article  CAS  Google Scholar 

  49. Xia Q, Sun S, Xu J, et al. Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics Small, 2018, 14: 1804149

    Article  Google Scholar 

  50. Lee HS, Kim S, Parmar NS, et al. Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries J Power Sources, 2019, 434: 226713

    Article  CAS  Google Scholar 

  51. Baggetto L, Unocic RR, Dudney NJ, et al. Fabrication and characterization of Li-Mn-Ni-O sputtered thin film high voltage cathodes for Li-ion batteries J Power Sources, 2012, 211: 108–118

    Article  CAS  Google Scholar 

  52. Pu X, Zhao D, Fu C, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves Angew Chem Int Ed, 2021, 60: 21310–21318

    Article  CAS  Google Scholar 

  53. Yang T, Zhong J, Liu J, et al. A general strategy for antimony-based alloy nanocomposite embedded in Swiss-cheese-like nitrogen-doped porous carbon for energy storage Adv Funct Mater, 2021, 31: 2009433

    Article  CAS  Google Scholar 

  54. Jiang Y, Liu J Definitions of pseudocapacitive materials: A brief review. Energy Environ Mater, 2019, 2: 30–37

    Article  Google Scholar 

  55. Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials Nat Rev Mater, 2019, 5: 5–19

    Article  Google Scholar 

  56. Wang J, Polleux J, Lim J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles J Phys Chem C, 2007, 111: 14925–14931

    Article  CAS  Google Scholar 

  57. Lindström H, Södergren S, Solbrand A, et al. Li+ ion insertion in TiO2 (anatase) 2 Voltammetry on nanoporous films J Phys Chem B, 1997, 101: 7717–7722

    Article  Google Scholar 

  58. Cao J, Xie Y, Yang Y, et al. Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI Adv Sci, 2022, 9: 2104689

    Article  CAS  Google Scholar 

  59. Li Y, Zhu M, Bandari VK, et al. On-chip batteries for dust-sized computers. Adv Energy Mater, 2022, 12: 2103641

    Article  CAS  Google Scholar 

  60. Portilla J, Mujica G, Lee JS, et al. The extreme edge at the bottom of the internet of things: A review IEEE Sens J, 2019, 19: 3179–3190

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Award Program for Fujian Minjiang Scholar Professorship, the National Natural Science Foundation of China (11704071 and 51871188), the Excellent Youth Foundation of Fujian Scientific Committee (2019J06008), Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZR146), and Fujian Provincial Department of Industry and Information Technology (82318075) The authors would like to thank Enago (http://www.enago.cn) for the English language review.

Author information

Authors and Affiliations

Authors

Contributions

Wang X and Peng DL designed the research. Ke B performed the experiments with Cheng S, Li W, Deng R and Zhang C Ke B wrote the paper with support from Lin J and Xie Q. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xinghui Wang  (王星辉) or Dong-Liang Peng  (彭栋梁).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Bingyuan Ke received his BSc degree from Qindao University in 2019. Now he is a PhD Student at the College of Physics and Information Engineering, Fuzhou University His current research focuses on the all-solid-state thin film microbatteries

Xinghui Wang recieved his PhD degree in condensed matter physics from Lanzhou University in 2013, and then worked as research staff at Nanyang Technological University and Singapore-MIT Alliance for Research and Technology in sequence. He is currently a Minjiang Scholar Professor at the College of Physics and Information Engineering, Fuzhou University. His research interests involve the fabrication of nanomaterials and thin film electrodes for energy storage applications, mainly including thin film microbattery, planar supercapacitor, flexible energy storage device, lithium metal anode and sulfur cathode

Dong-Liang Peng received his BSc (1983), MSc (1989) and PhD (1997) degrees in condensed matter physics from Lanzhou University (China). He received another PhD degree in materials science and engineering from Nagoya Institute of Technology (Japan) in 2002. Currently he is a Nanqiang Distinguished Professor of Materials Science and Engineering at Xiamen University (China). He received the National Natural Science Fund for Distinguished Young Scholars. His research focuses on the nanostructured and nanoscale functional materials, and their applications in energy storage, electromagnetics and catalysis

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, B., Wang, X., Cheng, S. et al. Ultrahigh-power iron oxysulfide thin films for microbatteries. Sci. China Mater. 66, 118–126 (2023). https://doi.org/10.1007/s40843-022-2152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2152-3

Keywords

Navigation