Skip to main content
Log in

1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light

1D/2D CeO2/ZnIn2S4 Z-scheme异质结光催化剂实现高效可见光分解水制氢

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of a high-efficiency photocatalyst having favorable charge transfer has become an important scientific approach for solar-to-fuel conversion. In this study, the one-dimensional (1D)/2D CeO2/ZnIn2S4 (ZIS) photocatalyst having a Z-scheme heterojunction has been successfully fabricated using the in situ growth of ZIS nanosheets on the CeO2 nanorod surfaces. The optimal H2 production rate of 3.29 mmol g−1 h−1 was achieved with the 15% CeO2/ZIS sample under visible light without any cocatalyst; furthermore, this value was 2.7 and 92.6 times higher than those of pristine ZIS and CeO2, respectively. The remarkable photocatalytic activity can be attributed to the efficient separation of photogenerated carriers as well as the formation of the Z-scheme heterojunction, which maintained the strong reduction of electrons in ZIS for H2 production. The presence of an internal electric field between CeO2 and ZIS has been demonstrated by both density functional theory calculations and Kelvin probe force microscopy. The Z-scheme transfer of photogenerated carriers in the CeO2/ZIS heterojunction has been confirmed by electron paramagnetic resonance spectroscopy and in situ irradiated X-ray photoelectron spectroscopy. This study presents certain insights into the development of efficient Z-scheme photocatalysts for H2 evolution from solar water splitting.

摘要

开发具有高效电荷转移效率的光催化剂已成为太阳能-氢能转换的关键科学方法. 本研究通过在CeO2纳米棒表面原位生长ZnIn2S4纳米片, 成功制备了具有Z-scheme异质结的1D/2D CeO2/ZnIn2S4光催化剂. 在无助催化剂的情况下, 15 wt% CeO2/85 wt% ZnIn2S4样品在可见光下实现了3.29 mmol g−1 h−1的最佳H2产量, 该值分别比原始ZnIn2S4和CeO2分别高2.7倍和92.6倍. 优异的光催化活性可能是由于光生载流子的有效分离和Z-scheme异质结的形成保留了ZnIn2S4中用于产氢的强还原电子. 密度泛函理论计算和开尔文探针力显微镜证明了CeO2和ZnIn2S4之间存在内部电场. 此外, 电子顺磁共振光谱以及原位辐照X射线光电子能谱证实了CeO2/ZnIn2S4异质结中的光生载流子按照Zscheme路径转移. 这项工作可为开发用于太阳能水分解制氢的高效Zscheme光催化剂提供一些见解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ran J, Zhang J, Yu J, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev, 2014, 43: 7787–7812

    Article  CAS  Google Scholar 

  2. Çelik D, Yıldız M. Investigation of hydrogen production methods in accordance with green chemistry principles. Int J Hydrogen Energy, 2017, 42: 23395–23401

    Article  Google Scholar 

  3. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev, 2019, 48: 2109–2125

    Article  CAS  Google Scholar 

  4. Lewis NS. Research opportunities to advance solar energy utilization. Science, 2016, 351: aad1920

    Article  Google Scholar 

  5. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253–278

    Article  CAS  Google Scholar 

  6. Shen R, Ren D, Ding Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci China Mater, 2020, 63: 2153–2188

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  8. Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal, 2019, 2: 387–399

    Article  CAS  Google Scholar 

  9. Xiao F, Zhou W, Sun B, et al. Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Sci China Mater, 2018, 61: 822–830

    Article  CAS  Google Scholar 

  10. Ma B, Zhao J, Ge Z, et al. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci China Mater, 2020, 63: 258–266

    Article  CAS  Google Scholar 

  11. Zhu Y, Wang L, Liu Y, et al. In-situ hydrogenation engineering of ZnIn2S4 for promoted visible-light water splitting. Appl Catal B-Environ, 2019, 241: 483–490

    Article  CAS  Google Scholar 

  12. Liu J, Fang W, Wei Z, et al. Metallic 1T−LixMoS2 co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation. Catal Sci Technol, 2018, 8: 1375–1382

    Article  CAS  Google Scholar 

  13. Yang W, Zhang L, Xie J, et al. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew Chem Int Ed, 2016, 55: 6716–6720

    Article  CAS  Google Scholar 

  14. Li W, Lin Z, Yang G. A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 2017, 9: 18290–18298

    Article  CAS  Google Scholar 

  15. Wang S, Wang Y, Zhang SL, et al. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv Mater, 2019, 31: 1903404

    Article  CAS  Google Scholar 

  16. Ye L, Wen Z, Li Z, et al. Hierarchical architectured ternary nanostructures photocatalysts with In(OH)3 nanocube on ZnIn2S4/NiS nanosheets for photocatalytic hydrogen evolution. Sol RRL, 2020, 4: 2000027

    Article  CAS  Google Scholar 

  17. Shi X, Mao L, Dai C, et al. Inert basal plane activation of two-dimensional ZnIn2S4via Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. J Mater Chem A, 2020, 8: 13376–13384

    Article  CAS  Google Scholar 

  18. Shi X, Dai C, Wang X, et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat Commun, 2022, 13: 1287

    Article  CAS  Google Scholar 

  19. Jiang R, Mao L, Zhao Y, et al. Spatial carrier separation in cobalt phosphate deposited ZnIn2S4 nanosheets for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci, 2022, 606: 317–327

    Article  CAS  Google Scholar 

  20. Cai X, Zeng Z, Liu Y, et al. Visible-light-driven water splitting by yolk-shelled ZnIn2S4-based heterostructure without noble-metal co-catalyst and sacrificial agent. Appl Catal B-Environ, 2021, 297: 120391

    Article  CAS  Google Scholar 

  21. Wu K, Mao L, Gu X, et al. Efficient charge separation in hierarchical NiS@ZnIn2S4 hollow nanospheres for photocatalytic water splitting. Chin Chem Lett, 2021, 33: 926–929

    Article  Google Scholar 

  22. Jourshabani M, Shariatinia Z, Badiei A. High efficiency visible-light-driven Fe2O3−xS/S-doped g-C3N4 heterojunction photocatalysts: Direct Z-scheme mechanism. J Mater Sci Tech, 2018, 34: 1511–1525

    Article  CAS  Google Scholar 

  23. Majhi D, Das K, Bariki R, et al. A facile reflux method for in situ fabrication of a non-cytotoxic Bi2S3/β-Bi2O3/ZnIn2S4 ternary photocatalyst: A novel dual Z-scheme system with enhanced multifunctional photocatalytic activity. J Mater Chem A, 2020, 8: 21729–21743

    Article  CAS  Google Scholar 

  24. He X, Zhang C. Recent advances in structure design for enhancing photocatalysis. J Mater Sci, 2019, 54: 8831–8851

    Article  CAS  Google Scholar 

  25. Di T, Xu Q, Ho WK, et al. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem, 2019, 11: 1394–1411

    Article  CAS  Google Scholar 

  26. Zong X, Jiang W, Sun Z. Efficient photocatalytic overall water splitting achieved with polymeric semiconductor-based Z-scheme heterostructures. Sci China Chem, 2021, 64: 875–876

    Article  CAS  Google Scholar 

  27. Li Y, Ruan Q, Lin H, et al. Unique Cd1−xZnxS@WO3−x and Cd1−xZnxS@WO3−x/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution. Sci China Mater, 2020, 63: 75–90

    Article  Google Scholar 

  28. Zhao Z, Xing Y, Li H, et al. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Sci China Mater, 2018, 61: 851–860

    Article  CAS  Google Scholar 

  29. Luo D, Peng L, Wang Y, et al. Highly efficient photocatalytic water splitting utilizing a WO3−x/ZnIn2S4 ultrathin nanosheet Z-scheme catalyst. J Mater Chem A, 2021, 9: 908–914

    Article  CAS  Google Scholar 

  30. He F, Zhu B, Cheng B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ, 2020, 272: 119006

    Article  CAS  Google Scholar 

  31. Kusmierek E. A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review. Catalysts, 2020, 10: 1435

    Article  CAS  Google Scholar 

  32. Cai X, Su M, Zeng Z, et al. Boosting the photocatalytic H2 evolution activity of a CdS/N-doped ZnIn2S4 direct Z-scheme heterostructure using a band alignment regulation strategy. Sustain Energy Fuels, 2021, 5: 6441–6448

    Article  CAS  Google Scholar 

  33. Li Q, Song L, Liang Z, et al. A review on CeO2-based electrocatalyst and photocatalyst in energy conversion. Adv Energy Sustain Res, 2021, 2: 2000063

    Article  Google Scholar 

  34. Wang K, Liu S, Zhang L, et al. Hierarchically grown Ni−Mo−S modified 2D CeO2 for high-efficiency photocatalytic hydrogen evolution. Catal Lett, 2022, 152: 931–943

    Article  CAS  Google Scholar 

  35. Ebadi M, Teymourinia H, Amiri O, et al. Synthesis of CeO2/Ag/Ho nanostructures in order to improve photo catalytic activity of CeO2 under visible light. J Mater Sci-Mater Electron, 2018, 29: 8817–8821

    Article  CAS  Google Scholar 

  36. Zhou K, Yang Z, Yang S. Highly reducible CeO2 nanotubes. Chem Mater, 2007, 19: 1215–1217

    Article  CAS  Google Scholar 

  37. Trovarelli A, Llorca J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal, 2017, 7: 4716–4735

    Article  CAS  Google Scholar 

  38. Tian J, Sang Y, Zhao Z, et al. Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small, 2013, 9: 3864–3872

    Article  CAS  Google Scholar 

  39. Wang S, Guan BY, Lou XWD. Construction of ZnIn2S4−In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J Am Chem Soc, 2018, 140: 5037–5040

    Article  CAS  Google Scholar 

  40. Zhang M, Yao J, Arif M, et al. 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution. Appl Surf Sci, 2020, 526: 145749

    Article  CAS  Google Scholar 

  41. Zeng C, Hu Y, Huang H. BiOBr0.75I0.25/BiOIO3 as a novel heterojunctional photocatalyst with superior visible-light-driven photocatalytic activity in removing diverse industrial pollutants ACS Sustain Chem Eng, 2017, 5: 3897–3905

    Article  CAS  Google Scholar 

  42. Shi X, Mao L, Yang P, et al. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution Appl Catal B-Environ, 2020, 265: 118616

    Article  CAS  Google Scholar 

  43. Wang R, Xue J, Wang KL, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics Science, 2019, 366: 1509–1513

    Article  CAS  Google Scholar 

  44. She X, Xu H, Wang H, et al. Controllable synthesis of CeO2/g-C3N4 composites and their applications in the environment Dalton Trans, 2015, 44: 7021–7031

    Article  CAS  Google Scholar 

  45. Zou W, Shao Y, Pu Y, et al. Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl Catal B-Environ, 2017, 218: 51–59

    Article  CAS  Google Scholar 

  46. Zhang Y, Zhang N, Tang ZR, et al. A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water. ACS Sustain Chem Eng, 2013, 1: 1258–1266

    Article  CAS  Google Scholar 

  47. Bêche E, Charvin P, Perarnau D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal, 2008, 40: 264–267

    Article  Google Scholar 

  48. Hao C, Tang Y, Shi W, et al. Facile solvothermal synthesis of a Z-scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem Eng J, 2021, 409: 128168

    Article  CAS  Google Scholar 

  49. Zhang P, Liu Y, Tian B, et al. Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catal Today, 2017, 281: 181–188

    Article  CAS  Google Scholar 

  50. Khan MM, Ansari SA, Pradhan D, et al. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res, 2014, 53: 9754–9763

    Article  CAS  Google Scholar 

  51. Li Z, Wang X, Tian W, et al. CoNi bimetal cocatalyst modifying a hierarchical ZnIn2S4 nanosheet-based microsphere noble-metal-free photocatalyst for efficient visible-light-driven photocatalytic hydrogen production. ACS Sustain Chem Eng, 2019, 7: 20190–20201

    Article  CAS  Google Scholar 

  52. Zhu Q, Sun Y, Xu S, et al. Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light. J Hazard Mater, 2020, 382: 121098

    Article  CAS  Google Scholar 

  53. Chen Y, Tian G, Ren Z, et al. Hierarchical core-shell carbon nanofiber@ZnIn2S4 composites for enhanced hydrogen evolution performance. ACS Appl Mater Interfaces, 2014, 6: 13841–13849

    Article  CAS  Google Scholar 

  54. Qin Y, Li H, Lu J, et al. Synergy between van der Waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 277: 119254

    Article  CAS  Google Scholar 

  55. Qin Y, Li H, Lu J, et al. Photocatalytic degradation of 2-mercaptobenzothiazole by a novel Bi2WO6 nanocubes/In(OH)3 photocatalyst: Synthesis process, degradation pathways, and an enhanced photocatalytic performance mechanism study. Appl Surf Sci, 2019, 481: 1313–1326

    Article  CAS  Google Scholar 

  56. Tian N, Huang H, Liu C, et al. In situ co-pyrolysis fabrication of CeO2/g-C3N4 n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties. J Mater Chem A, 2015, 3: 17120–17129

    Article  CAS  Google Scholar 

  57. Chen L, Meng D, Wu X, et al. In situ synthesis of V4+ and Ce3+ self-doped BiVO4/CeO2 heterostructured nanocomposites with high surface areas and enhanced visible-light photocatalytic activity. J Phys Chem C, 2016, 120: 18548–18559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019XKQYMS11).

Author information

Authors and Affiliations

Authors

Contributions

Jiang R performed the experiments and wrote the paper with support from Chubenko EB and Bondarenko V; Mao L and Zhao Y designed and engineered the samples; Zhang J and Cai X contributed to the theoretical analysis; Sui Y, Gu X, and Cai X performed the data analysis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xiuquan Gu  (顾修全) or Xiaoyan Cai  (蔡晓燕).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Renqian Jiang received her BS degree from Central South University. She is currently studying for her MS degree under the supervision of Professor Xiuquan Gu at the University of Mining and Technology. Her research interest focuses on photocatalytic hydrogen production.

Xiuquan Gu received his BS degree in physics from Anhui Normal University and his PhD degree from Zhejiang University in 2009. He is currently an assistant professor at the University of Mining and Technology. His current research interests include semiconductor photocatalysis, photocatalytic hydrogen production, and photoelectrocatalysis.

Xiaoyan Cai received her PhD degree from Beihang University in 2018. She is currently a faculty member at the School of Materials Science and Physics, China University of Mining and Technology. Her research interests are photocatalytic and electrocatalytic materials for energy conversion and environmental remediation.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Mao, L., Zhao, Y. et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci. China Mater. 66, 139–149 (2023). https://doi.org/10.1007/s40843-022-2132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2132-8

Keywords

Navigation