Skip to main content
Log in

Strong-coupling superconductivity with Tc ∼ 10.8 K induced by P doping in the topological semimetal Mo5Si3

拓扑半金属Mo5Si3中磷掺杂诱导Tc ∼ 10.8 K的强耦合超导电性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

By performing P doping on the Si sites in the topological semimetal Mo5Si3, we discover strong-coupling superconductivity in Mo5Si3−xPx (0.5 ≤ x ≤ 2.0). Mo5Si3 crystallizes in the W5Si3-type structure with space group of I4/mcm (No. 140), and is not a superconductor itself. Upon P doping, the lattice parameter a decreases while c increases monotonously. Bulk superconductivity is revealed in Mo5Si3−xPx (0.5 ≤ x ≤ 2.0) from resistivity, magnetization, and heat capacity measurements. Tc in Mo5Si1.5P1.5 reaches as high as 10.8 K, setting a new record among the W5Si3-type superconductors. The upper and lower critical fields for Mo5Si1.5P1.5 are 14.56 T and 105 mT, respectively. Moreover, Mo5Si1.5P1.5 is found to be a fully gapped superconductor with strong electron-phonon coupling. First-principles calculations suggest that the enhancement of electron-phonon coupling is possibly due to the shift of the Fermi level, which is induced by electron doping. The calculations also reveal the nontrivial band topology in Mo5Si3. The Tc and upper critical field in Mo5Si3−xPx are fairly high among pseudobinary compounds. Both of them are higher than those in NbTi, making future applications promising. Our results suggest that the W5Si3-type compounds are ideal platforms to search for new superconductors. By examinations of their band topologies, more candidates for topological superconductors can be expected in this structural family.

摘要

通过对拓扑半金属Mo5Si3的硅位进行磷掺杂, 我们发现了Mo5Si3−xPx (0.5 ≤ x ≤ 2.0)中强耦合的超导电性. W5Si3结构的Mo5Si3本身并不具有超导性, 随着磷掺杂的增加, 其晶格常数a单调减小, 而c单调增加. 在Mo5Si3−xPx (0.5 ≤ x ≤ 2.0)中, 电阻、 磁化率和比热测量揭示了其中的体超导特性. Mo5Si1.5P1.5的超导转变温度(Tc)高达10.8 K, 创造了W5Si3结构超导体的Tc纪录, 其上下临界场分别为14.56 T和105 mT, 且是一个具有强电子-声子耦合的全能隙超导体. 第一性原理计算表明, 强的电子-声子耦合可能来自于掺磷所引起的费米面的移动, 同时也揭示了Mo5Si3非平庸的能带拓扑性质. Mo5Si3−xPx超导体的Tc和上临界场在准二元化合物中相当高, 超过了NbTi超导体, 具有潜在的应用价值. 本文的结果表明W5Si3型结构中可能存在更多的新型超导体, 对该体系的研究将有助于拓扑超导体的发现.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaev AY. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 2001, 44: 131–136

    Article  Google Scholar 

  2. Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057–1110

    Article  CAS  Google Scholar 

  3. Sato M, Ando Y. Topological superconductors: A review. Rep Prog Phys, 2017, 80: 076501

    Article  Google Scholar 

  4. Ivanov DA. Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys Rev Lett, 2001, 86: 268–271

    Article  CAS  Google Scholar 

  5. Lin R, Wang Z. A brief review on Majorana bound states in topological superconductors. Sci China-Phys Mech Astron, 2016, 59: 677401

    Article  Google Scholar 

  6. Kallin C. Chiral p-wave order in Sr2RuO4. Rep Prog Phys, 2012, 75: 042501

    Article  Google Scholar 

  7. Fu L, Berg E. Odd-parity topological superconductors: Theory and application to CuxBi2Se3. Phys Rev Lett, 2010, 105: 097001

    Article  Google Scholar 

  8. Sasaki S, Ren Z, Taskin AA, et al. Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor. Phys Rev Lett, 2012, 109: 217004

    Article  Google Scholar 

  9. Guguchia Z, von Rohr F, Shermadini Z, et al. Signatures of the topological s+ superconducting order parameter in the type-II Weyl semimetal Td-MoTe2. Nat Commun, 2017, 8: 1082

    Article  CAS  Google Scholar 

  10. Fu L, Kane CL. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100: 096407

    Article  Google Scholar 

  11. Xu JP, Wang MX, Liu ZL, et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys Rev Lett, 2015, 114: 017001

    Article  CAS  Google Scholar 

  12. Wang E, Ding H, Fedorov AV, et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat Phys, 2013, 9: 621–625

    Article  CAS  Google Scholar 

  13. Rehman MU, Hua C, Lu Y. Topology and ferroelectricity in group-V monolayers. Chin Phys B, 2020, 29: 057304

    Article  CAS  Google Scholar 

  14. Hor YS, Williams AJ, Checkelsky JG, et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys Rev Lett, 2010, 104: 057001

    Article  CAS  Google Scholar 

  15. Sasaki S, Kriener M, Segawa K, et al. Topological superconductivity in CuxBi2Se3. Phys Rev Lett, 2011, 107: 217001

    Article  Google Scholar 

  16. Liu Z, Yao X, Shao J, et al. Superconductivity with topological surface state in SrxBi2Se3. J Am Chem Soc, 2015, 137: 10512–10515

    Article  CAS  Google Scholar 

  17. Asaba T, Lawson BJ, Tinsman C, et al. Rotational symmetry breaking in a trigonal superconductor Nb-doped Bi2Se3. Phys Rev X, 2017, 7: 011009

    Google Scholar 

  18. Fang Y, Pan J, Zhang D, et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Adv Mater, 2019, 31: 1901942

    Article  Google Scholar 

  19. Sharma MM, Rani P, Sang L, et al. Superconductivity below 2.5K in Nb0.25Bi2Se3 topological insulator single crystal. J Supercond Nov Magn, 2020, 33: 565–568

    Article  Google Scholar 

  20. Sakano M, Okawa K, Kanou M, et al. Topologically protected surface states in a centrosymmetric superconductor β-PdBi2. Nat Commun, 2015, 6: 8595

    Article  CAS  Google Scholar 

  21. Thirupathaiah S, Ghosh S, Jha R, et al. Unusual Dirac fermions on the surface of a noncentrosymmetric α-BiPd superconductor. Phys Rev Lett, 2016, 117: 177001

    Article  CAS  Google Scholar 

  22. Zhang P, Yaji K, Hashimoto T, et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science, 2018, 360: 182–186

    Article  Google Scholar 

  23. Li YW, Zheng HJ, Fang YQ, et al. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. Nat Commun, 2021, 12: 2874

    Article  Google Scholar 

  24. Wu JF, Hua C, Liu B, et al. Doping-induced superconductivity in the topological semimetal Mo5Si3. Chem Mater, 2020, 32: 8930–8937

    Article  CAS  Google Scholar 

  25. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystlogr, 2001, 34: 210–213

    Article  CAS  Google Scholar 

  26. Ruan BB, Yang QS, Zhou MH, et al. Superconductivity in a new T2-phase Mo5GeB2. J Alloys Compd, 2021, 868: 159230

    Article  CAS  Google Scholar 

  27. Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502

    Article  Google Scholar 

  28. Schlipf M, Gygi F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput Phys Commun, 2015, 196: 36–44

    Article  CAS  Google Scholar 

  29. Ito K, Hayashi T, Nakamura H. Electrical and thermal properties of single crystalline Mo5X3 (X = Si, B, C) and related transition metal 5-3 silicides. Intermetallics, 2004, 12: 443–450

    Article  CAS  Google Scholar 

  30. Wiesmann H, Gurvitch M, Lutz H, et al. Simple model for characterizing the electrical resistivity in A-15 superconductors. Phys Rev Lett, 1977, 38: 782–785

    Article  CAS  Google Scholar 

  31. Yang W, Lou Z, Zhu Q, et al. Superconductivity in noncentrosymmetric Mo3P single crystal. Supercond Sci Technol, 2019, 32: 115014

    Article  CAS  Google Scholar 

  32. McGuire MA, Parker DS. Superconductivity at 9 K in Mo5PB2 with evidence for multiple gaps. Phys Rev B, 2016, 93: 064507

    Article  Google Scholar 

  33. Allen PB, Dynes RC. Transition temperature of strong-coupled superconductors reanalyzed. Phys Rev B, 1975, 12: 905–922

    Article  CAS  Google Scholar 

  34. McMillan WL. Transition temperature of strong-coupled superconductors. Phys Rev, 1968, 167: 331–344

    Article  CAS  Google Scholar 

  35. Carbotte JP. Properties of boson-exchange superconductors. Rev Mod Phys, 1990, 62: 1027–1157

    Article  CAS  Google Scholar 

  36. Tinkham M. Introduction to Superconductivity. New York: Dover, 1996

    Google Scholar 

  37. Padamsee H, Neighbor JE, Shiffman CA. Quasiparticle phenomenology for thermodynamics of strong-coupling superconductors. J Low Temp Phys, 1973, 12: 387–411

    Article  CAS  Google Scholar 

  38. Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B, 2007, 76: 045302

    Article  Google Scholar 

  39. Zhang T, Jiang Y, Song Z, et al. Catalogue of topological electronic materials. Nature, 2019, 566: 475–479

    Article  CAS  Google Scholar 

  40. Hampshire DP. A barrier to increasing the critical current density of bulk untextured polycrystalline superconductors in high magnetic fields. Phys C-Supercond, 1998, 296: 153–166

    Article  CAS  Google Scholar 

  41. Ho KM, Cohen ML, Pickett WE. Maximum superconducting transition temperatures in A15 compounds? Phys Rev Lett, 1978, 41: 815–818

    Article  CAS  Google Scholar 

  42. Kim M, Wang CZ, Ho KM. Topological states in A15 superconductors. Phys Rev B, 2019, 99: 224506

    Article  CAS  Google Scholar 

  43. Wu J, Liu B, Cui Y, et al. Type-II superconductivity in W5Si3-type Nb5Sn2Al. Supercond Sci Technol, 2019, 32: 045010

    Article  CAS  Google Scholar 

  44. Claeson T, Ivarsson J, Rasmussen SE. Superconductivity of Nb5Ge3. J Appl Phys, 1977, 48: 3998–3999

    Article  CAS  Google Scholar 

  45. Shishido T, Ukei K, Toyota N, et al. Flux growth of a new ternary superconducting crystal Nb5Sn2Ga. J Cryst Growth, 1989, 96: 1–6

    Article  CAS  Google Scholar 

  46. Shishido T, Ye J, Toyota N, et al. Growth and superconductivity of a new ternary intermetallic compound, Ta5Ga2Sn. Jpn J Appl Phys, 1989, 28: 1519–1520

    Article  CAS  Google Scholar 

  47. Xie W, Luo H, Seibel EM, et al. Superconductivity in Hf5Sb3−xRux: Are Ru and Sb a critical charge-transfer pair for superconductivity? Chem Mater, 2015, 27: 4511–4514

    Article  CAS  Google Scholar 

  48. Xie W, Luo H, Phelan BF, et al. Zr5Sb3−xRux, a new superconductor in the W5Si3 structure type. J Mater Chem C, 2015, 3: 8235–8240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0704200, 2021YFA1401800, 2018YFA0305602, and 2017YFA0302904), the National Natural Science Foundation of China (12074414, 12074002, and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB25000000).

Author information

Authors and Affiliations

Authors

Contributions

Sun JN conceived the project. Ruan BB and Sun JN synthesized the samples and did most of the measurements; Chen Y, Gu YD and Yang QS assisted in some of the measurements; Ruan BB carried out the theoretical calculations and wrote the paper with supports from Zhou MH, Ma MW and Zhao K; Chen GF, Shan L and Ren ZA reviewed the original manuscript; Ren ZA supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bin-Bin Ruan  (阮彬彬), Lei Shan  (单磊) or Zhi-An Ren  (任治安).

Additional information

Supplementary information Comparison of VCA and supercell results, SEM image and elemental mapping of Mo5Si1.5P1.5, the relaxed lattice parameters from DFT compared with the experimental ones, and the subtraction of Mo3P contribution from the raw data Supporting data are available in the online version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Bin-Bin Ruan received his PhD degree in 2018, and is currently a post-doctoral researcher at the Institute of Physics, Chinese Academy of Sciences (IOPCAS) He received his bachelor degree from the University of Science and Technology of China in 2011 His research interests include the exploration, characterization, and calculation of novel superconductors based on the IVB–VIB elements.

Jun-Nan Sun is a master student of physics at Anhui University under the supervision of Prof. Zhi-An Ren and Prof. Lei Shan. His research work focuses on the exploration and research of superconducting materials containing light elements.

Lei Shan is a professor at the Institutes of Physical Science and Information Technology, Anhui University. He received his BS/PhD degrees from the Department of Physics, Nanjing University in 1996/2001. He was a researcher at the IOPCAS from 2013 to 2018. His research focuses on the mechanisms of novel superconductors and related quantum materials, scanning tunneling microscopy, and point contact Andreev spectroscopy.

Zhi-An Ren obtained his PhD degree in physics from the IOPCAS in 2004. He was an associate professor from 2007 and has been a professor at the IOPCAS since 2011. He is a group leader of IOPCAS on studies and explorations of novel high-Tc superconducting materials, physics, and applications.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, BB., Sun, JN., Chen, Y. et al. Strong-coupling superconductivity with Tc ∼ 10.8 K induced by P doping in the topological semimetal Mo5Si3. Sci. China Mater. 65, 3125–3133 (2022). https://doi.org/10.1007/s40843-022-2102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2102-8

Keywords

Navigation