Skip to main content
Log in

Advances in flexible lithium metal batteries

柔性锂金属电池研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities. As the main energy storage devices, lithium-ion batteries (LIBs) are gradually approaching their theoretical limit in terms of energy density. In recent years, lithium metal batteries (LMBs) with metallic Li as the anode are revived due to the extremely high energy density, and are considered to be one of the ideal alternatives for the next generation of flexible power supply. In this review, key technologies and scientific problems to be overcome for flexible LMBs are discussed. Then, the recent advances in flexible LMBs, including the design of flexible Li metal anodes, electrolytes, cathodes and interlayers, are summarized. In addition, we have summed up the research progress of flexible device configurations, and emphasized the importance of flexibility evaluation and functionality integration to ensure the wearing safety in complex environment. Finally, the challenges and future development of flexible LMBs are summarized and prospected.

摘要

柔性储能设备已成为改善人们生活品质不可缺少的新型可穿戴电子元件. 锂离子电池作为主要的储能电源, 其能量密度正逐渐接近其理论极限. 近年来, 以金属锂为负极的锂金属电池(LMBs)因极高的能量密度而得以复兴, 有望成为新一代柔性电源的理想替代品之一. 本文首先讨论了柔性锂金属电池需要解决的关键技术和科学问题, 然后综述了柔性金属锂电池的最新进展, 包括柔性锂金属负极、 电解质、 正极材料及其中间层的设计. 本文还总结了柔性电池结构的研究进展, 并强调了柔性性能评估和功能性集成对于确保复杂环境中佩戴安全性的重要性. 最后, 提出了柔性锂金属电池面临的挑战并对其未来发展方向进行了总结和展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature, 2016, 540: 379–385

    Article  CAS  Google Scholar 

  2. Liu X, Liu J, Wang J, et al. Bioinspired, microstructured silk fibroin adhesives for flexible skin sensors. ACS Appl Mater Interfaces, 2020, 12: 5601–5609

    Article  CAS  Google Scholar 

  3. Chang J, Huang Q, Gao Y, et al. Pathways of developing high-energy-density flexible lithium batteries. Adv Mater, 2021, 33: 2004419

    Article  CAS  Google Scholar 

  4. Wang M, Luo Y, Wang T, et al. Artificial skin perception. Adv Mater, 2021, 33: 2003014

    Article  CAS  Google Scholar 

  5. Ma J, Li Y, Grundish NS, et al. The 2021 battery technology roadmap. J Phys D-Appl Phys, 2021, 54: 183001

    Article  CAS  Google Scholar 

  6. Wang J, Ge B, Li H, et al. Challenges and progresses of lithium-metal batteries. Chem Eng J, 2021, 420: 129739

    Article  CAS  Google Scholar 

  7. Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes. Chem Soc Rev, 2020, 49: 3040–3071

    Article  CAS  Google Scholar 

  8. Xia S, Wu X, Zhang Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem, 2019, 5: 753–785

    Article  CAS  Google Scholar 

  9. Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater, 2018, 8: 1702296

    Article  CAS  Google Scholar 

  10. Tang Y, Zhang Y, Li W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev, 2015, 44: 5926–5940

    Article  CAS  Google Scholar 

  11. Xia H, Tang Y, Malyi OI, et al. Deep cycling for high-capacity Li-ion batteries. Adv Mater, 2021, 33: 2004998

    Article  CAS  Google Scholar 

  12. Liu T, Yang XY, Zhang XB. Recent progress of flexible lithium-air/O2 battery. Adv Mater Technol, 2020, 5: 2000476

    Article  CAS  Google Scholar 

  13. Gao Y, Guo Q, Zhang Q, et al. Fibrous materials for flexible Li-S battery. Adv Energy Mater, 2021, 11: 2002580

    Article  CAS  Google Scholar 

  14. Liu T, Feng XL, Jin X, et al. Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air. Angew Chem Int Ed, 2019, 58: 18240–18245

    Article  CAS  Google Scholar 

  15. Kim JH, Lee YH, Cho SJ, et al. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: Towards ultrahigh energy density and flexibility. Energy Environ Sci, 2019, 12: 177–186

    Article  CAS  Google Scholar 

  16. Zhang S, Liang T, Wang D, et al. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv Sci, 2021, 8: 2003241

    Article  CAS  Google Scholar 

  17. Lu SH, Lu HC. Pouch-type hybrid Li-air battery enabled by flexible composite lithium-ion conducting membrane. J Power Sources, 2021, 489: 229431

    Article  CAS  Google Scholar 

  18. Lee J, Song H, Min KA, et al. Laser-ablated red phosphorus on carbon nanotube film for accelerating polysulfide conversion toward highperformance and flexible lithium-sulfur batteries. Small Methods, 2021, 5: 2100215

    Article  CAS  Google Scholar 

  19. Wang H, Li F, Zhu B, et al. Flexible integrated electrical cables based on biocomposites for synchronous energy transmission and storage. Adv Funct Mater, 2016, 26: 3472–3479

    Article  CAS  Google Scholar 

  20. Zhou G, Li F, Cheng HM. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7: 1307–1338

    Article  CAS  Google Scholar 

  21. Yu P, Zeng Y, Zhang H, et al. Flexible Zn-ion batteries: Recent progresses and challenges. Small, 2019, 15: 1804760

    Article  CAS  Google Scholar 

  22. Liu T, Xu JJ, Liu QC, et al. Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density. Small, 2017, 13: 1602952

    Article  CAS  Google Scholar 

  23. Yao M, Wang R, Zhao Z, et al. A flexible all-in-one lithium-sulfur battery. ACS Nano, 2018, 12: 12503–12511

    Article  CAS  Google Scholar 

  24. Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature, 2021, 593: 218–222

    Article  CAS  Google Scholar 

  25. Wang A, Tang S, Kong D, et al. Bending-tolerant anodes for lithium-metal batteries. Adv Mater, 2018, 30: 1703891

    Article  CAS  Google Scholar 

  26. Fang C, Li J, Zhang M, et al. Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572: 511–515

    Article  CAS  Google Scholar 

  27. Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem, 2019, 5: 2326–2352

    Article  CAS  Google Scholar 

  28. Wang S, Xiong P, Zhang J, et al. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater, 2020, 29: 310–331

    Article  Google Scholar 

  29. Shen ZZ, Zhou C, Wen R, et al. Surface mechanism of catalytic electrodes in lithium-oxygen batteries: How nanostructures mediate the interfacial reactions. J Am Chem Soc, 2020, 142: 16007–16015

    Article  CAS  Google Scholar 

  30. Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater, 2022, 12: 2100748

    Article  CAS  Google Scholar 

  31. Peng HJ, Huang JQ, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem Soc Rev, 2017, 46: 5237–5288

    Article  CAS  Google Scholar 

  32. Yang XY, Xu JJ, Bao D, et al. High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer. Adv Mater, 2017, 29: 1700378

    Article  CAS  Google Scholar 

  33. Li J, Wang Z, Yang L, et al. A flexible Li-air battery workable under harsh conditions based on an integrated structure: A composite lithium anode encased in a gel electrolyte. ACS Appl Mater Interfaces, 2021, 13: 18627–18637

    Article  CAS  Google Scholar 

  34. Liu K, Kong B, Liu W, et al. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule, 2018, 2: 1857–1865

    Article  CAS  Google Scholar 

  35. Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotech, 2014, 9: 618–623

    Article  CAS  Google Scholar 

  36. Guo Z, Li J, Xia Y, et al. A flexible polymer-based Li-air battery using a reduced graphene oxide/Li composite anode. J Mater Chem A, 2018, 6: 6022–6032

    Article  CAS  Google Scholar 

  37. Lu R, Cheng M, Mao L, et al. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat, 2020, 2: e12010

    CAS  Google Scholar 

  38. Zhang M, Lu R, Yuan H, et al. Nanowire array-coated flexible substrate to accommodate lithium plating for stable lithium-metal anodes and flexible lithium-organic batteries. ACS Appl Mater Interfaces, 2019, 11: 20873–20880

    Article  CAS  Google Scholar 

  39. Chang J, Shang J, Sun Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat Commun, 2018, 9: 4480

    Article  CAS  Google Scholar 

  40. Ouyang Y, Zong W, Wang J, et al. Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. Energy Storage Mater, 2021, 42: 68–77

    Article  Google Scholar 

  41. Gao J, Chen C, Dong Q, et al. Stamping flexible Li alloy anodes. Adv Mater, 2021, 33: 2005305

    Article  CAS  Google Scholar 

  42. Li S, Ma Y, Ren J, et al. Integrated, flexible lithium metal battery with improved mechanical and electrochemical cycling stability. ACS Appl Energy Mater, 2019, 2: 3642–3650

    Article  CAS  Google Scholar 

  43. Yu B, Fan Y, Mateti S, et al. An ultra-long-life flexible lithium-sulfur battery with lithium cloth anode and polysulfone-functionalized separator. ACS Nano, 2021, 15: 1358–1369

    Article  CAS  Google Scholar 

  44. Chang J, Hu H, Shang J, et al. Rational design of Li-wicking hosts for ultrafast fabrication of flexible and stable lithium metal anodes. Small, 2022, 18: 2105308

    Article  CAS  Google Scholar 

  45. Cheng Y, Lu R, Amin K, et al. In situ generated mixed ion/electron-conducting scaffold with uniform Li deposition for flexible Li metal anodes. ACS Appl Energy Mater, 2021, 4: 6106–6115

    Article  CAS  Google Scholar 

  46. Wang CY, Zheng ZJ, Feng YQ, et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74: 104817

    Article  CAS  Google Scholar 

  47. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature, 2021, 592: 551–557

    Article  CAS  Google Scholar 

  48. Li S, Lorandi F, Wang H, et al. Functional polymers for lithium metal batteries. Prog Polym Sci, 2021, 122: 101453

    Article  CAS  Google Scholar 

  49. Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol, 2019, 14: 705–711

    Article  CAS  Google Scholar 

  50. Wu J, Rao Z, Cheng Z, et al. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv Energy Mater, 2019, 9: 1902767

    Article  CAS  Google Scholar 

  51. Ai S, Wang T, Li T, et al. A chitosan/poly(ethylene oxide)-based hybrid polymer composite electrolyte suitable for solid-state lithium metal batteries. ChemistrySelect, 2020, 5: 2878–2885

    Article  CAS  Google Scholar 

  52. Wang Z, Shen L, Deng S, et al. 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater, 2021, 33: 2100353

    Article  CAS  Google Scholar 

  53. Liu W, Yi C, Li L, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew Chem Int Ed, 2021, 60: 12931–12940

    Article  CAS  Google Scholar 

  54. Duan H, Yin YX, Zeng XX, et al. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater, 2018, 10: 85–91

    Article  Google Scholar 

  55. Niu C, Liu J, Chen G, et al. Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries. J Power Sources, 2019, 417: 70–75

    Article  CAS  Google Scholar 

  56. Zeng Z, Chen X, Sun M, et al. Nanophase-separated, elastic epoxy composite thin film as an electrolyte for stable lithium metal batteries. Nano Lett, 2021, 21: 3611–3618

    Article  CAS  Google Scholar 

  57. Cao C, Li Y, Chen S, et al. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries. ACS Appl Mater Interfaces, 2019, 11: 35683–35692

    Article  CAS  Google Scholar 

  58. Li H, Lian F, Meng N, et al. Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries. Adv Funct Mater, 2021, 31: 2008487

    Article  CAS  Google Scholar 

  59. Ezeigwe ER, Dong L, Manjunatha R, et al. A review of self-healing electrode and electrolyte materials and their mitigating degradation of lithium batteries. Nano Energy, 2021, 84: 105907

    Article  CAS  Google Scholar 

  60. Zhou B, Zuo C, Xiao Z, et al. Self-healing polymer electrolytes formed via dual-networks: A new strategy for flexible lithium metal batteries. Chem Eur J, 2018, 24: 19200–19207

    Article  CAS  Google Scholar 

  61. Wu N, Shi YR, Lang SY, et al. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew Chem Int Ed, 2019, 58: 18146–18149

    Article  CAS  Google Scholar 

  62. Wang C, Li RJ, Chen P, et al. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J Mater Chem A, 2021, 9: 4758–4769

    Article  CAS  Google Scholar 

  63. Zhu J, Zhang Z, Zhao S, et al. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: Design, performance, and challenges. Adv Energy Mater, 2021, 11: 2003836

    Article  CAS  Google Scholar 

  64. Monroe C, Newman J. Dendrite growth in lithium/polymer systems. J Electrochem Soc, 2003, 150: A1377

    Article  CAS  Google Scholar 

  65. Deng K, Zhou S, Xu Z, et al. A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem Eng J, 2022, 428: 131224

    Article  CAS  Google Scholar 

  66. Chen R, Qu W, Guo X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater Horiz, 2016, 3: 487–516

    Article  CAS  Google Scholar 

  67. Pan K, Zhang L, Qian W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv Mater, 2020, 32: 2000399

    Article  CAS  Google Scholar 

  68. Wu Q, Yang Y, Ma C, et al. Flexible nanocomposite polymer electrolyte based on UV-cured polyurethane acrylate for lithium metal batteries. ACS Sustain Chem Eng, 2021, 9: 5631–5641

    Article  CAS  Google Scholar 

  69. Yu X, Wang L, Ma J, et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater, 2020, 10: 1903939

    Article  CAS  Google Scholar 

  70. Zhang D, Xu X, Huang X, et al. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solidstate lithium metal batteries. J Mater Chem A, 2020, 8: 18043–18054

    Article  CAS  Google Scholar 

  71. Han JS, Hwang GC, Yu H, et al. Preparation of fully flexible lithium metal batteries with free-standing β-Na0.33V2O5 cathodes and LAGP hybrid solid electrolytes. J Industrial Eng Chem, 2021, 94: 368–375

    Article  CAS  Google Scholar 

  72. Li Y, Arnold W, Thapa A, et al. Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries ACS Appl Mater Interfaces, 2020, 12: 42653–42659

    Article  CAS  Google Scholar 

  73. Zhao CZ, Zhang XQ, Cheng XB, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes Proc Natl Acad Sci USA, 2017, 114: 11069–11074

    Article  CAS  Google Scholar 

  74. Bae J, Li Y, Zhao F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries Energy Storage Mater, 2018, 15: 46–52

    Article  Google Scholar 

  75. Jiang T, He P, Wang G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solidstate lithium batteries Adv Energy Mater, 2020, 10: 1903376

    Article  CAS  Google Scholar 

  76. Zou X, Lu Q, Zhong Y, et al. Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions. Small, 2018, 14: 1801798

    Article  CAS  Google Scholar 

  77. Yan W, Wei J, Chen T, et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy, 2021, 80: 105510

    Article  CAS  Google Scholar 

  78. Cui Y, Chai J, Du H, et al. Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. ACS Appl Mater Interfaces, 2017, 9: 8737–8741

    Article  CAS  Google Scholar 

  79. Lei X, Liu X, Ma W, et al. Flexible lithium-air battery in ambient air with an in situ formed gel electrolyte. Angew Chem Int Ed, 2018, 57: 16131–16135

    Article  CAS  Google Scholar 

  80. Liu L, Sun C. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem, 2020, 7: 707–715

    Article  CAS  Google Scholar 

  81. Shu C, Long J, Dou SX, et al. Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O2 battery with superior safety under extreme conditions. Small, 2019, 15: 1804701

    Article  CAS  Google Scholar 

  82. Zhou G, Lin X, Liu J, et al. In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. Energy Storage Mater, 2021, 34: 629–639

    Article  Google Scholar 

  83. Zhang Y, Deng X, Zhang L, et al. Swelling poly(ionic liquid) supported by three-dimensional wire mesh for oil/water separation. ACS Appl Mater Interfaces, 2019, 11: 14347–14353

    Article  CAS  Google Scholar 

  84. Zhang Y, Chen B, Zhang Y, et al. Water-enriched poly(ionic liquid)s: Highly-efficient microreactors for the hydrolysis of ethylene carbonate. Green Chem, 2018, 20: 1594–1601

    Article  CAS  Google Scholar 

  85. Zhang Y, Wang B, Elageed EHM, et al. Swelling poly(ionic liquid)s: Synthesis and application as quasi-homogeneous catalysts in the reaction of ethylene carbonate with aniline. ACS Macro Lett, 2016, 5: 435–438

    Article  CAS  Google Scholar 

  86. Huang Z, Choudhury S, Gong H, et al. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium. J Am Chem Soc, 2020, 142: 21393–21403

    Article  CAS  Google Scholar 

  87. Atik J, Diddens D, Thienenkamp JH, et al. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew Chem Int Ed, 2021, 60: 11919–11927

    Article  CAS  Google Scholar 

  88. Chuang CC, Hsieh YY, Chang WC, et al. Phosphorus-sulfur/graphene composites as flexible lithium-sulfur battery cathodes with super high volumetric capacity. Chem Eng J, 2020, 387: 123904

    Article  CAS  Google Scholar 

  89. Li L, Wu ZP, Sun H, et al. A foldable lithium-sulfur battery. ACS Nano, 2015, 9: 11342–11350

    Article  CAS  Google Scholar 

  90. Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon, 2017, 113: 371–378

    Article  CAS  Google Scholar 

  91. Chen K, Cao J, Lu Q, et al. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res, 2018, 11: 1345–1357

    Article  CAS  Google Scholar 

  92. Cao J, Chen C, Zhao Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv Mater, 2016, 28: 9629–9636

    Article  CAS  Google Scholar 

  93. Liu R, Liu Y, Chen J, et al. Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy, 2017, 33: 325–333

    Article  CAS  Google Scholar 

  94. Chong WG, Xiao Y, Huang JQ, et al. Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium-sulfur batteries. Nanoscale, 2018, 10: 21132–21141

    Article  CAS  Google Scholar 

  95. Liu Y, Yao M, Zhang L, et al. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J Energy Chem, 2019, 38: 199–206

    Article  Google Scholar 

  96. Chong WG, Huang JQ, Xu ZL, et al. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv Funct Mater, 2017, 27: 1604815

    Article  CAS  Google Scholar 

  97. Song X, Wang S, Bao Y, et al. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries. J Mater Chem A, 2017, 5: 6832–6839

    Article  CAS  Google Scholar 

  98. Song JY, Lee HH, Hong WG, et al. A polysulfide-infiltrated carbon cloth cathode for high-performance flexible lithium-sulfur batteries. Nanomaterials, 2018, 8: 90

    Article  CAS  Google Scholar 

  99. Gao Z, Zhang Y, Song N, et al. Towards flexible lithium-sulfur battery from natural cotton textile. Electrochim Acta, 2017, 246: 507–516

    Article  CAS  Google Scholar 

  100. Kalybekkyzy S, Mentbayeva A, Vezir Kahraman M, et al. Flexible S/DPAN/KB nanofiber composite as binder-free cathodes for Li-S batteries. J Electrochem Soc, 2019, 166: A5396–A5402

    Article  CAS  Google Scholar 

  101. Shi H, Niu S, Lv W, et al. Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon, 2018, 138: 18–25

    Article  CAS  Google Scholar 

  102. Xiang M, Wu H, Liu H, et al. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv Funct Mater, 2017, 27: 1702573

    Article  CAS  Google Scholar 

  103. Zhang M, Yang Y, Zhang X, et al. Flexible VOx nanosphere@SWCNT hybrid films with dual-confinement function of polysulfides for highperformance lithium-sulfur batteries. Adv Mater Interfaces, 2018, 5: 1800766

    Article  CAS  Google Scholar 

  104. Chen S, Zhang J, Wang Z, et al. Electrocatalytic NiCo2O4 nanofiber arrays on carbon cloth for flexible and high-loading lithium-sulfur batteries. Nano Lett, 2021, 21: 5285–5292

    Article  CAS  Google Scholar 

  105. Ma L, Zhang W, Wang L, et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano, 2018, 12: 4868–4876

    Article  CAS  Google Scholar 

  106. Li H, Wen X, Shao F, et al. Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chem Eng J, 2021, 412: 128562

    Article  CAS  Google Scholar 

  107. Feng T, Zhao T, Zhu S, et al. Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium-sulfur batteries. Small Methods, 2021, 5: 2100649

    Article  CAS  Google Scholar 

  108. Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv Mater, 2019, 31: 1902228

    Article  CAS  Google Scholar 

  109. Mao Y, Sun W, Yue X, et al. Flexible free-standing cathode enabled via multifunctional Mo2C for high sulfur loading lithium-sulfur batteries. J Power Sources, 2021, 506: 230254

    Article  CAS  Google Scholar 

  110. Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun, 2017, 8: 14628

    Article  Google Scholar 

  111. Ding X, Pan Z, Liu N, et al. Freestanding carbon nanotube film for flexible straplike lithium/sulfur batteries. Chem Eur J, 2019, 25: 3775–3780

    Article  CAS  Google Scholar 

  112. Liu B, Zhang Y, Wang Z, et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv Mater, 2020, 32: 2003657

    Article  CAS  Google Scholar 

  113. Li J, Chen Y, Zhang S, et al. Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for highperformance flexible Li-S batteries. ACS Appl Mater Interfaces, 2020, 12: 49519–49529

    Article  CAS  Google Scholar 

  114. Song N, Gao Z, Zhang Y, et al. B4C nanoskeleton enabled, flexible lithium-sulfur batteries. Nano Energy, 2019, 58: 30–39

    Article  CAS  Google Scholar 

  115. Zhang M, Meng Q, Ahmad A, et al. Poly(3,4-ethylenediox-ythiophene)-coated sulfur for flexible and binder-free cathodes of lithium-sulfur batteries. J Mater Chem A, 2017, 5: 17647–17652

    Article  CAS  Google Scholar 

  116. Zeng S, Li X, Guo F, et al. A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries. Electrochim Acta, 2019, 320: 134571

    Article  CAS  Google Scholar 

  117. Xiao P, Bu F, Yang G, et al. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv Mater, 2017, 29: 1703324

    Article  CAS  Google Scholar 

  118. Pan H, Cheng Z, Zhong H, et al. Flexible cathode materials enabled by a multifunctional covalent organic gel for lithium-sulfur batteries with high areal capacities. ACS Appl Mater Interfaces, 2019, 11: 8032–8039

    Article  CAS  Google Scholar 

  119. He Y, Li M, Zhang Y, et al. All-purpose electrode design of flexible conductive scaffold toward high-performance Li-S batteries. Adv Funct Mater, 2020, 30: 2000613

    Article  CAS  Google Scholar 

  120. Liu J, Li Z, Jia B, et al. A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li-S batteries. J Mater Chem A, 2020, 8: 6303–6310

    Article  CAS  Google Scholar 

  121. Wang L, Pan J, Zhang Y, et al. A Li-air battery with ultralong cycle life in ambient air. Adv Mater, 2018, 30: 1704378

    Article  CAS  Google Scholar 

  122. Liu QC, Xu JJ, Xu D, et al. Flexible lithium-oxygen battery based on a recoverable cathode. Nat Commun, 2015, 6: 7892

    Article  CAS  Google Scholar 

  123. Liu QC, Li L, Xu JJ, et al. Flexible and foldable Li-O2 battery based on paper-ink cathode. Adv Mater, 2015, 27: 8095–8101

    Article  CAS  Google Scholar 

  124. Yang XY, Xu JJ, Chang ZW, et al. Blood-capillary-inspired, freestanding, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries. Adv Energy Mater, 2018, 8: 1702242

    Article  CAS  Google Scholar 

  125. Lin X, Kang Q, Zhang Z, et al. Industrially weavable metal/cotton yarn air electrodes for highly flexible and stable wire-shaped Li-O2 batteries. J Mater Chem A, 2017, 5: 3638–3644

    Article  CAS  Google Scholar 

  126. Jung JW, Nam JS, Klyukin K, et al. Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li-air batteries in ambient air. Nano Energy, 2021, 83: 105821

    Article  CAS  Google Scholar 

  127. Yang ZD, Yang XY, Liu T, et al. In situ CVD derived Co-N-C composite as highly efficient cathode for flexible Li-O2 batteries. Small, 2018, 14: 1800590

    Article  CAS  Google Scholar 

  128. Jiang Y, Cheng J, Zou L, et al. Graphene foam decorated with ceria microspheres as a flexible cathode for foldable lithium-air batteries. ChemCatChem, 2017, 9: 4231–4237

    Article  CAS  Google Scholar 

  129. Jaradat A, Zhang C, Singh SK, et al. High performance air breathing flexible lithium-air battery. Small, 2021, 17: 2102072

    Article  CAS  Google Scholar 

  130. Huang Y, Jiang Y, Zou L, et al. Ultrathin CuCo2O4 nanosheets on carbon textiles as flexible cathodes for bendable lithium-air batteries. J Electrochem Soc, 2017, 164: A3896–A3902

    Article  CAS  Google Scholar 

  131. Long J, Hou Z, Shu C, et al. Free-standing three-dimensional CuCo2S4 nanosheet array with high catalytic activity as an efficient oxygen electrode for lithium-oxygen batteries. ACS Appl Mater Interfaces, 2019, 11: 3834–3842

    Article  CAS  Google Scholar 

  132. Kim SH, Kim NY, Choe UJ, et al. Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Adv Energy Mater, 2021, 11: 2100531

    Article  CAS  Google Scholar 

  133. Yin YB, Yang XY, Chang ZW, et al. A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator. Adv Mater, 2018, 30: 1703791

    Article  CAS  Google Scholar 

  134. Zou X, Liao K, Wang D, et al. Water-proof, electrolyte-nonvolatile, and flexible Li-air batteries via O2-permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Mater, 2020, 27: 297–306

    Article  Google Scholar 

  135. Huang JQ, Zhang B, Xu ZL, et al. Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium-sulfur batteries. J Power Sources, 2015, 285: 43–50

    Article  CAS  Google Scholar 

  136. Fan Y, Yang Z, Hua W, et al. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv Energy Mater, 2017, 7: 1602380

    Article  CAS  Google Scholar 

  137. Cho SH, Cho SM, Bae KY, et al. Improving electrochemical properties of lithium-sulfur batteries by adding a catalyst-embedded interlayer. Electrochim Acta, 2019, 315: 33–40

    Article  CAS  Google Scholar 

  138. Wei N, Cai J, Wang R, et al. Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-doped graphene heterostructure interlayer for lithium-sulfur batteries. Nano Energy, 2019, 66: 104190

    Article  CAS  Google Scholar 

  139. Yang JL, Zhao SX, Lu YM, et al. ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li-S batteries. J Mater Chem A, 2020, 8: 231–241

    Article  Google Scholar 

  140. Liu T, Liu QC, Xu JJ, et al. Cable-type water-survivable flexible Li-O2 battery. Small, 2016, 12: 3101–3105

    Article  CAS  Google Scholar 

  141. Zhang Y, Wang L, Guo Z, et al. High-performance lithium-air battery with a coaxial-fiber architecture. Angew Chem Int Ed, 2016, 55: 4487–4491

    Article  CAS  Google Scholar 

  142. Zhou J, Li X, Yang C, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv Mater, 2019, 31: 1804439

    Article  CAS  Google Scholar 

  143. Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal. J Mater Sci, 2019, 54: 2585–2600

    Article  CAS  Google Scholar 

  144. Gao Y, Hu H, Chang J, et al. Realizing high-energy and stable wiretype batteries with flexible lithium-metal composite yarns. Adv Energy Mater, 2021, 11: 2101809

    Article  CAS  Google Scholar 

  145. Wang J, Yang G, Chen J, et al. Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv Energy Mater, 2019, 9: 1902001

    Article  CAS  Google Scholar 

  146. Yang XY, Feng XL, Jin X, et al. An illumination-assisted flexible self-powered energy system based on a Li-O2 battery. Angew Chem Int Ed, 2019, 58: 16411–16415

    Article  CAS  Google Scholar 

  147. Liu QC, Liu T, Liu DP, et al. A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Adv Mater, 2016, 28: 8413–8418

    Article  CAS  Google Scholar 

  148. Chang J, Huang Q, Zheng Z. A figure of merit for flexible batteries. Joule, 2020, 4: 1346–1349

    Article  Google Scholar 

  149. Wang L, Zhang Y, Pan J, et al. Stretchable lithium-air batteries for wearable electronics. J Mater Chem A, 2016, 4: 13419–13424

    Article  CAS  Google Scholar 

  150. Wang X, Pan Z, Yang J, et al. Stretchable fiber-shaped lithium metal anode. Energy Storage Mater, 2019, 22: 179–184

    Article  Google Scholar 

  151. Zhang YY, Zhang N, Peng P, et al. Uniformly dispersed Ru nanoparticles constructed by in situ confined polymerization of ionic liquids for the electrocatalytic hydrogen evolution reaction. Small Methods, 2021, 5: 2100505

    Article  CAS  Google Scholar 

  152. Wei W, Zhang Y, Liang L, et al. Highly-dispersed Ge quantum dots in carbon frameworks for ultra-long-life sodium ion batteries. Mater Chem Front, 2021, 5: 7778–7786

    Article  CAS  Google Scholar 

  153. Mauger A, Julien CM, Goodenough JB, et al. Tribute to michel armand: From rocking chair-Li-ion to solid-state lithium batteries. J Electrochem Soc, 2020, 167: 070507

    Article  CAS  Google Scholar 

  154. He W, Fu X, Zhang D, et al. Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy, 2021, 84: 105880

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (U1804138, U1904195, and 22104079), the Program for Science & Technology Innovative Research Team (20IRTSTHN007), the Innovation Talents (22HASTIT028) and Key Scientific Research (22A150052) in the Universities of Henan Province, and the Key Science and Technology Research of Henan Province (212102210654).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang Y and Zhang J wrote and revised the manuscript; Zhang Y and Yi L collected and summarized the literature, and contributed to the manuscript writing; Wei W and Wang H revised the manuscript and offered creative proposal for improving the depth and coverage of the review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Wei Wei  (魏伟) or Hua Wang  (王华).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yongya Zhang received his BSc degree in chemistry from Zhengzhou University and PhD degree in physical chemistry from the East China Normal University in 2018. He is currently a lecture at Shangqiu Normal University. His research focuses on polyelectrolytes, energy storage materials and electrocatalysis.

Wei Wei is a professor at Shangqiu Normal University. He received his PhD degree in materials science and engineering from Beihang University in 2014. He is now the director of the New Energy Battery Materials Research Center of Henan province at Shangqiu Normal University. His research interests include nanomaterials and new secondary batteries.

Hua Wang is a professor at the School of Chemistry, Beihang University. He received his PhD degree in materials science and engineering from Beihang University in 2012. After working as a research fellow at Nanyang Technological University (NTU) for two years, he started his independent research career at Beihang University in 2014. His current research interest is focused on advanced nanomaterials for energy conversion and storage, including lithium/sodium ion batteries and aqueous zinc ion batteries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yi, L., Zhang, J. et al. Advances in flexible lithium metal batteries. Sci. China Mater. 65, 2035–2059 (2022). https://doi.org/10.1007/s40843-022-2100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2100-6

Keywords

Navigation