Skip to main content
Log in

Portable and flexible water-evaporation-generator based on hydrogel

基于水凝胶的便携式柔性水蒸发生电器件

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

水蒸发生电器件(WEG)是近年来发现的一种从自然水蒸发中获 取能量的新方法, 其巨大的应用潜力引起了广泛的研究兴趣. 然而, WEG通常需要提供液态水源, 不利于其便携式应用. 这里, 我们开发了一种基于聚丙烯酰胺水凝胶与网状电极复合的便携式柔性WEG. 当器件的一侧暴露在空气中时, 不对称的水分蒸发会产生持续3天以上0.2 V左右的开路电压输出. 即使在温度低至−5°C情况下, 也可以连续工作. 尽管低温下由于水分蒸发受到抑制, 其输出电压会降低. 水凝胶出色的柔韧性和可拉伸性为构建可拉伸应变高达60%以上的WEG提供了可能. 其输出电压几乎不受所施加应变的影响, 展示了其在便携式电源应用中的巨大潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu G, Yao G, Xu J, et al. Spatial decoupling of light absorption and scattering centers in plasmon-assisted bubble column evaporator for solar steam generation. ES Energy Environ, 2020, 9: 41

    CAS  Google Scholar 

  2. Wang Y, Peng G, Sharshir SW, et al. The weighted values of solar evaporation’s environment factors obtained by machine learning. ES Mater Manuf, 2021, 14: 87–94

    CAS  Google Scholar 

  3. Zhang Z, Li X, Yin J, et al. Emerging hydrovoltaic technology. Nat Nanotech, 2018, 13: 1109–1119

    Article  CAS  Google Scholar 

  4. Xue G, Xu Y, Ding T, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotech, 2017, 12: 317–321

    Article  CAS  Google Scholar 

  5. Ding T, Liu K, Li J, et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv Funct Mater, 2017, 27: 1700551

    Article  CAS  Google Scholar 

  6. Li J, Liu K, Ding T, et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy, 2019, 58: 797–802

    Article  CAS  Google Scholar 

  7. Zhang G, Duan Z, Qi X, et al. Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon, 2019, 148: 1–8

    Article  CAS  Google Scholar 

  8. Huang Y, Cheng H, Yang C, et al. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ Sci, 2019, 12: 1848–1856

    Article  CAS  Google Scholar 

  9. Sun J, Li P, Qu J, et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy, 2019, 57: 269–278

    Article  CAS  Google Scholar 

  10. Tian J, Zang Y, Sun J, et al. Surface charge density-dependent performance of Ni−Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy, 2020, 70: 104502

    Article  CAS  Google Scholar 

  11. Shao C, Ji B, Xu T, et al. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl Mater Interfaces, 2019, 11: 30927–30935

    Article  CAS  Google Scholar 

  12. Ji B, Chen N, Shao C, et al. Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. J Mater Chem A, 2019, 7: 6766–6772

    Article  CAS  Google Scholar 

  13. Yoon SG, Yang YJ, Yoo J, et al. Natural evaporation-driven ionovoltaic electricity generation. ACS Appl Electron Mater, 2019, 1: 1746–1751

    Article  CAS  Google Scholar 

  14. Das SS, Pedireddi VM, Bandopadhyay A, et al. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett, 2019, 19: 7191–7200

    Article  CAS  Google Scholar 

  15. Yun TG, Bae J, Rothschild A, et al. Transpiration driven electrokinetic power generator. ACS Nano, 2019, 13: 12703–12709

    Article  CAS  Google Scholar 

  16. Gao X, Xu T, Shao C, et al. Electric power generation using paper materials. J Mater Chem A, 2019, 7: 20574–20578

    Article  CAS  Google Scholar 

  17. Zhou X, Zhang W, Zhang C, et al. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl Mater Interfaces, 2020, 12: 11232–11239

    Article  CAS  Google Scholar 

  18. Li J, Liu K, Xue G, et al. Electricity generation from water droplets via capillary infiltrating. Nano Energy, 2018, 48: 211–216

    Article  CAS  Google Scholar 

  19. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015, 6: 105–121

    Article  CAS  Google Scholar 

  20. Sun JY, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489: 133–136

    Article  CAS  Google Scholar 

  21. Yang C, Yin T, Suo Z. Polyacrylamide hydrogels. I. Network imperfection. J Mech Phys Solids, 2019, 131: 43–55

    Article  CAS  Google Scholar 

  22. Keplinger C, Sun JY, Foo CC, et al. Stretchable, transparent, ionic conductors. Science, 2013, 341: 984–987

    Article  CAS  Google Scholar 

  23. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001, 101: 1869–1880

    Article  CAS  Google Scholar 

  24. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev, 2001, 53: 321–339

    Article  CAS  Google Scholar 

  25. Cheng H, Pan Y, Chen Q, et al. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater, 2021, 4: 505–513

    Article  CAS  Google Scholar 

  26. Huang K, Liu J, Lin S, et al. Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring. Adv Compos Hybrid Mater, 2022, 5: 220–228

    Article  CAS  Google Scholar 

  27. Cao S, Ge W, Yang Y, et al. High strength, flexible, and conductive graphene/polypropylene fiber paper fabricated via papermaking process. Adv Compos Hybrid Mater, 2022, 5: 104–112

    Article  CAS  Google Scholar 

  28. Lai C, Wang Y, Fu L, et al. Aqueous flexible all-solid-state NiCo−Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv Compos Hybrid Mater, 2022, 5: 536–546

    Article  CAS  Google Scholar 

  29. Huang K, Wu Y, Liu J, et al. A double-layer CNTs/PVA hydrogel with high stretchability and compressibility for human motion detection. Eng Sci, 2022, 17: 319–327

    CAS  Google Scholar 

  30. Gao Q, Pan Y, Zheng G, et al. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater, 2021, 4: 274–285

    Article  CAS  Google Scholar 

  31. Liu S, Du H, Liu K, et al. Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater, 2021, 4: 1367–1383

    Article  CAS  Google Scholar 

  32. Wang Z, Li X, Wang L, et al. Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Adv Compos Hybrid Mater, 2020, 3: 1–7

    Article  CAS  Google Scholar 

  33. Xiao L, Qi H, Qu K, et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater, 2021, 4: 306–316

    Article  CAS  Google Scholar 

  34. Gu H, Zhang H, Ma C, et al. Smart strain sensing organic-inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J Mater Chem C, 2019, 7: 2353–2360

    Article  CAS  Google Scholar 

  35. Wang T, Wusigale T, Kuttappan D, et al. Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater, 2021, 4: 696–706

    Article  CAS  Google Scholar 

  36. Kordjazi S, Kamyab K, Hemmatinejad N. Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: An efficient water/oil separation filter. Adv Compos Hybrid Mater, 2020, 3: 167–176

    Article  CAS  Google Scholar 

  37. Schroeder TBH, Guha A, Lamoureux A, et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature, 2017, 552: 214–218

    Article  CAS  Google Scholar 

  38. Zhang R, Wang S, Yeh MH, et al. A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Adv Mater, 2015, 27: 6482–6487

    Article  CAS  Google Scholar 

  39. van der Heyden FHJ, Bonthuis DJ, Stein D, et al. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett, 2006, 6: 2232–2237

    Article  CAS  Google Scholar 

  40. Werner C, Zimmermann R, Kratzmüller T. Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity. Colloids Surfs A-Physicochem Eng Aspects, 2001, 192: 205–213

    Article  CAS  Google Scholar 

  41. Bai Y, Chen B, Xiang F, et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl Phys Lett, 2014, 105: 151903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0705400), the National Natural Science Foundation of China (12150002, 12172176, 12002158, 52002175, and 11802121), the Natural Science Foundation of Jiangsu Province (BK20212008 and BK20211191), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-I-0421G01 and MCMS-I-0421K01), China Postdoctoral Science Foundation (2018T110494, 2020TQ0146, and 2021M701703), the Fundamental Research Funds for the Central Universities (NE2020001, NJ2020003, NZ2020001, and NS2021042), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Li X conceived the study. Yin J and Guo W supervised the project. Liao Z, with assistance from Niu J, Hu C, and Li L, performed the experiments. Li X and Yin J wrote the paper with input from Shen H. All authors contributed to the general discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Xuemei Li  (李雪梅), Jun Yin  (殷俊) or Wanlin Guo  (郭万林).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details are available in the online version of the paper.

Xuemei Li received her PhD degree in 2016 with a thesis on the synthesis and properties of two-dimensional materials. Now she is an associate professor at Nanjing University of Aeronautics and Astronautics (NUAA) and focuses on the physical mechanics of nanomaterials.

Jun Yin obtained his PhD degree from NUAA in 2016, following which he worked at the University of Manchester as a research associate for three years. Then, he joined NUAA in 2019 as a professor. His research focuses on the surface/interface interaction of nanomaterials and their applications.

Wanlin Guo is an academician of the Chinese Academy of Sciences, chair professor in mechanics and nanoscience, and founder and director of the Institute of Nanoscience, NUAA. His current research focuses on (1) three-dimensional fatigue fracture and damage tolerance and durability design of structures; (2) intelligent nanomaterials and devices, multiscale physical mechanics, novel conception and technology for efficient energy conversion; (3) molecular physical mechanics for neuronal signaling and molecular biomimics.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liao, Z., Niu, J. et al. Portable and flexible water-evaporation-generator based on hydrogel. Sci. China Mater. 65, 2889–2893 (2022). https://doi.org/10.1007/s40843-022-2086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2086-9

Navigation