Skip to main content
Log in

Simultaneously enhanced oxidation resistance and mechanical properties in a novel lightweight Ti2VZrNb0.5Al0.5 high-entropy alloy

协同提高新型轻质Ti2VZrNb0.5Al0.5高熵合金抗氧化性能与力学性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Enhanced oxidation resistance is a primary demand for the application of refractory high-entropy alloys (RHEAs) at elevated temperatures. In this study, Al was added to a Ti2VZrNb RHEA to partially substitute Nb to improve its oxidation resistance and mechanical properties. The alloy was found to have an increased oxidation resistance by forming a continuous Al2O3 + ZrO2 oxide protective surface. At the same time, the room-temperature yield strength was also increased by 66% to 1273 MPa via solid solution strengthening. The low atomic mass of Al also helped to reduce the density of the alloy by 8.2% to 5.44 g cm−3. This resulted in a high specific yield strength of 234 MPa cm3 g−1 for the alloy. Meanwhile, the Ti2VZrNb0.5Al0.5 alloy also exhibited a high compressive plasticity of >50%. These values are among the best reported so far for RHEAs.

摘要

提高抗氧化性能是难熔高熵合金高温应用的首要要求. 本研究中, 我们将Al代替50%Nb添加到Ti2VZrNb难熔高熵合金中, 以提高其抗氧化性能与力学性能. 结果表明, 相比于Ti2VZrNb合金, Ti2VZrNb0.5-Al0.5 合金的抗氧化性得到了显著提升, 这是由于在合金表面形成了连续的Al2O3 + ZrO2氧化层保护膜. 同时, Ti2VZrNb0.5Al0.5 合金室温屈服强度高达1273 MPa, 相比于Ti2VZrNb合金强度提升66%. 结构表征说明, Ti2VZrNb0.5Al0.5合金强度提升得益于其较大的固溶强化效果. 较轻元素Al的添加使得该合金具有较低的密度(5.44 g cm3), 相比于Ti2VZrNb 合金密度降低8.2%, 这使得该合金的比强度高达234 MPa cm3g1. 同时, Ti2VZrNb0.5Al0.5合金也具有较高的压缩塑性(>50%). 综合这些结果, 该合金是迄今为止所报道的性能最好的难熔高熵合金.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509: 6043–6048

    Article  CAS  Google Scholar 

  2. Srikanth M, Annamalai AR, Muthuchamy A, et al. A review of the latest developments in the field of refractory high-entropy alloys. Crystals, 2021, 11: 612

    Article  CAS  Google Scholar 

  3. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

    Article  CAS  Google Scholar 

  4. Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18: 102

    Article  CAS  Google Scholar 

  5. Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706

    Article  CAS  Google Scholar 

  6. Fecht H, Furrer D. Processing of nickel-base superalloys for turbine engine disc applications. Adv Eng Mater, 2000, 2: 777–787

    Article  CAS  Google Scholar 

  7. Auburtin P, Wang T, Cockcroft SL, et al. Freckle formation and freckle criterion in superalloy castings. Metall Materi Trans B, 2000, 31: 801–811

    Article  Google Scholar 

  8. Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Sci Tech, 1999, 3: 513–523

    Article  Google Scholar 

  9. Gell M, Duhl DN, Giamei AF. The development of single crystal superalloy turbine blades. Superalloys, 1980: 205–214

  10. Senkov ON, Woodward CF. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater Sci Eng-A, 2011, 529: 311–320

    Article  CAS  Google Scholar 

  11. Senkov ON, Woodward C, Miracle DB. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014, 66: 2030–2042

    Article  CAS  Google Scholar 

  12. Senkov ON, Senkova SV, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214–228

    Article  CAS  Google Scholar 

  13. Senkov ON, Jensen JK, Pilchak AL, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des, 2018, 139: 498–511

    Article  CAS  Google Scholar 

  14. Yao HW, Qiao JW, Gao MC, et al. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng-A, 2016, 674: 203–211

    Article  CAS  Google Scholar 

  15. Wang SP, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater Sci Eng-C, 2017, 73: 80–89

    Article  CAS  Google Scholar 

  16. Su L, Jia L, Weng J, et al. Improvement in the oxidation resistance of Nb-Ti-Si-Cr-Al-Hf alloys containing alloyed Ge and B. Corrosion Sci, 2014, 88: 460–465

    Article  CAS  Google Scholar 

  17. Chang CH, Titus MS, Yeh JW. Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv Eng Mater, 2018, 20: 1700948

    Article  CAS  Google Scholar 

  18. Butler TM, Chaput KJ, Dietrich JR, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J Alloys Compd, 2017, 729: 1004–1019

    Article  CAS  Google Scholar 

  19. Liu XW, Bai ZC, Ding XF, et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability. Mater Lett, 2021, 287: 129255

    Article  CAS  Google Scholar 

  20. Liao YC, Li TH, Tsai PH, et al. Designing novel lightweight, high-strength and high-plasticity Ti(AlCrNb)100-medium-entropy alloys. Intermetallics, 2020, 117: 106673

    Article  CAS  Google Scholar 

  21. Xu ZQ, Ma ZL, Wang M, et al. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater Sci Eng-A, 2019, 755: 318–322

    Article  CAS  Google Scholar 

  22. Yurchenko NY, Stepanov ND, Shaysultanov DG, et al. Effect of Al content on structure and mechanical properties of the ALCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater Charact, 2016, 121: 125–134

    Article  CAS  Google Scholar 

  23. Daoud HM, Manzoni AM, Völkl R, et al. Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17-Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air. Adv Eng Mater, 2015, 17: 1134–1141

    Article  CAS  Google Scholar 

  24. Li LC, Li MX, Liu M, et al. Enhanced oxidation resistance of MoTa-TiCrAl high entropy alloys by removal of Al. Sci China Mater, 2021, 64: 223–231

    Article  CAS  Google Scholar 

  25. Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013, 41: 96–103

    Article  CAS  Google Scholar 

  26. Guo S, Liu CT. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446

    Article  Google Scholar 

  27. Ma Y, Wang Q, Jiang BB, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater, 2018, 147: 213–225

    Article  CAS  Google Scholar 

  28. Ge S, Fu H, Zhang L, et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy. Mater Sci Eng-A, 2020, 784: 139275

    Article  CAS  Google Scholar 

  29. Nagasako N, Jahnátek M, Asahi R, et al. Anomalies in the response of V, Nb, and Ta to tensile and shear loading: Ab initio density functional theory calculations. Phys Rev B, 2010, 81: 094108

    Article  CAS  Google Scholar 

  30. Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys, 2016, 120: 164902

    Article  CAS  Google Scholar 

  31. Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys, 2011, 109: 103505

    Article  CAS  Google Scholar 

  32. Qi L, Chrzan DC. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys Rev Lett, 2014, 112: 115503

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhou Y, Lin J, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  CAS  Google Scholar 

  34. Zhang Y, Guo S, Liu CT, et al. Phase formation rules. In: Gao M, Yeh JW, Liaw P, et al. (eds.). High-Entropy Alloys. Cham: Springer, 2016. 21–49

    Chapter  Google Scholar 

  35. Saunders N, Miodownik AP, Schillé JP. Modelling of the thermophysical and physical properties for solidification of Ni-based superalloys. J Mater Sci, 2004, 39: 7237–7243

    Article  CAS  Google Scholar 

  36. Saunders N, Guo UKZ, Li X, et al. Using JMatPro to model materials properties and behavior. JOM, 2003, 55: 60–65

    Article  CAS  Google Scholar 

  37. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  CAS  Google Scholar 

  38. Feng R, Gao M, Lee C, et al. Design of light-weight high-entropy alloys. Entropy, 2016, 18: 333

    Article  CAS  Google Scholar 

  39. Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater, 2013, 61: 1545–1557

    Article  CAS  Google Scholar 

  40. Senkov ON, Miracle DB, Chaput KJ, et al. Development and exploration of refractory high entropy alloys—A review. J Mater Res, 2018, 33: 3092–3128

    Article  CAS  Google Scholar 

  41. Stepanov ND, Yurchenko NY, Skibin DV, et al. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J Alloys Compd, 2015, 652: 266–280

    Article  CAS  Google Scholar 

  42. Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J Alloys Compd, 2016, 661: 206–215

    Article  CAS  Google Scholar 

  43. Yurchenko NY, Stepanov ND, Zherebtsov SV, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x= 0–1.5) high-entropy alloys. Mater Sci Eng-A, 2017, 704: 82–90

    Article  CAS  Google Scholar 

  44. Chen S, Yang X, Dahmen K, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy, 2014, 16: 870–884

    Article  CAS  Google Scholar 

  45. Guo NN, Wang L, Luo LS, et al. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics, 2016, 69: 74–77

    Article  CAS  Google Scholar 

  46. Zhang Y, Yang X, Liaw PK Alloy design and properties optimization of high-entropy alloys JOM, 2012, 64: 830–838

    Article  CAS  Google Scholar 

  47. Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J Alloys Compd, 2017, 694: 869–876

    Article  CAS  Google Scholar 

  48. Juan CC, Tseng KK, Hsu WL, et al. Solution strengthening of ductile refractory HfMxNbTaTiZr high-entropy alloys. Mater Lett, 2016, 175: 284–287

    Article  CAS  Google Scholar 

  49. Han ZD, Luan HW, Liu X, et al. Microstructures and mechanical properties of Ti NbMoTaW refractory high-entropy alloys. Mater Sci Eng-A, 2018, 712: 380–385

    Article  CAS  Google Scholar 

  50. Senkov ON, Senkova SV, Miracle DB, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng-A, 2013, 565: 51–62

    Article  CAS  Google Scholar 

  51. Qiao DX, Jiang H, Chang XX, et al. Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater Sci Forum, 2017, 898: 638–642

    Article  Google Scholar 

  52. Yang X, Zhang Y, Liaw PK. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36: 292–298

    Article  CAS  Google Scholar 

  53. Cao P, Ni X, Tian F, et al. Ab initio study of AlxMoNbTiV high-entropy alloys. J Phys-Condens Matter, 2015, 27: 075401

    Article  CAS  Google Scholar 

  54. Liu CM, Wang HM, Zhang SQ, et al. Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloys Compd, 2014, 583: 162–169

    Article  CAS  Google Scholar 

  55. Yurchenko N, Panina E, Zherebtsov S, et al. Oxidation behavior of refractory AlNbTiVZr0.25 high-entropy alloy. Materials, 2018, 11: 2526

    Article  CAS  Google Scholar 

  56. Gorr B, Schellert S, Müller F, et al. Current status of research on the oxidation behavior of refractory high entropy alloys. Adv Eng Mater, 2021, 23: 2001047

    Article  CAS  Google Scholar 

  57. Anne BR, Shaik S, Tanaka M, et al. A crucial review on recent updates of oxidation behavior in high entropy alloys. SN Appl Sci, 2021, 3: 366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (2021YFA1200201), the National Natural Science Foundation of China (52071003, 91860202, and 11604006), Beijing Nova Program (Z211100002121170), Beijing Municipal Education Commission Project (PXM2020_012040_002021 and PXM2019_012045_003232), Beijing Outstanding Young Scientists Projects (BJJWZYJH01201910005018), Beijing Natural Science Foundation (Z180014), and “111” project (DB18015).

Author information

Authors and Affiliations

Authors

Contributions

Han X, Mao S, and An Z designed the study. An Z, Yang T, Yang X, Wang X, and Liu S carried out the main experiments. An Z, Han X, Mao S, Zhang Z, Liu Y, and Chen Y analyzed the data and wrote the main draft of the paper. All authors contributed to the discussion of the results and commented on the manuscript.

Corresponding authors

Correspondence to Shengcheng Mao  (毛圣成), Yinong Liu  (刘亦农) or Xiaodong Han  (韩晓东).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Zibing An is a PhD candidate at Beijing Key Laboratory and the Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology. His current research focuses on the design and deformation mechanism of high-performance high-entropy alloy materials.

Shengcheng Mao is a professor at Beijing University of Technology. His current interests focus on the development of novel in-situ techniques in TEM and their applications in high-entropy alloys and superalloys, to in-situ study the evolution of microstructure under external mechanical, electric and thermal fields, and to reveal the underlying mechanisms.

Yinong Liu is a professor at The University of Western. His current research interests are in the broad field of materials science and engineering, with specific attention in physical metallurgy, metallic composites, shape memory alloys, magnetic materials, thin films for MEMS technology, elastic strain engineering, nanomaterials, and functional materials.

Xiaodong Han is a professor at Beijing University of Technology. He originally developed the atomic-level in-situ dynamic characterization method of the mechanical behavior of materials, and increased the spatial resolution of the in-situ characterization technology of the mechanical behavior of materials from nanometer to picometer scales, achieving an order of magnitude improvement. His research mainly focuses on the physical and chemical properties of materials, the mechanical behavior of materials from micro-nano to atomic resolution in a wide temperature range (room temperature to 1200°C) and environmental conditions.

Supplementary Materials

40843_2022_2045_MOESM1_ESM.pdf

Simultaneously enhanced oxidation resistance and mechanical properties in a novel lightweight Ti2VZrNb0.5Al0.5 high-entropy alloy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Mao, S., Yang, T. et al. Simultaneously enhanced oxidation resistance and mechanical properties in a novel lightweight Ti2VZrNb0.5Al0.5 high-entropy alloy. Sci. China Mater. 65, 2842–2849 (2022). https://doi.org/10.1007/s40843-022-2045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2045-4

Keywords

Navigation