Skip to main content
Log in

Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices

用于柔性和图案化电致变色器件的二维聚苯胺的喷墨打印研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Conjugated organic polymer (COP)-based electrochromic devices (ECDs) exhibit promising applications in digital and color displays. However, fabricating COP-based ECDs integrated with excellent electrochromic performance, customized patterns, and flexibility remains challenging. In this study, we report inkjet-printed, flexible, and patterned ECDs based on two-dimensional (2D) polyaniline (PANI) sheets, which are evenly dispersed in formic acid (FA) enabling high-precision, stable inkjet printing. The pristine lamellar structure of PANI sheets, which combine nanoscale thickness and an appropriate doping ratio, and the additive-free ink composition endow the printed PANI electrodes and ECDs with high performance. The fabricated PANI electrode exhibits a high optical contrast (76% at a wavelength of 750 nm), a good coloration efficiency (CE) of 259.1 cm2 C−1, and a short coloration/bleaching time (1.8/2.4 s), simultaneously integrated with pseudocapacitance and mechanical flexibility. Moreover, the 2D lamellar PANI ink developed in this study can be printed into various designed patterns, particularly for electrochemically controlled, addressable electrochromic displays. This work highlights 2D lamellar PANI as a promising electrochromic material for flexible and patterned ECDs.

摘要

基于有机共轭聚合物的电致变色器件(ECD)在数字和彩色显示器中具有广阔的应用前景. 然而, 制备兼具优异电致变色性能、 柔韧性和定制化图案的ECD仍然是一个挑战. 本文报道了利用喷墨打印技术制备二维层状聚苯胺(PANI)基柔性图案化ECD的方法. 层状PANI均匀分散在甲酸中, 能够实现高精度、 稳定的喷墨打印. 同时, 层状PANI的纳米级厚度、 适当的掺杂比例, 以及无添加剂的墨水成分, 使得打印后的PANI电极和器件保持较高的电致变色性能和电化学特性. 喷墨打印所得电极不仅表现出优异的光学对比度(76%, 750 nm波长)、 良好的着色效率259.1 cm2 C−1、 较短的着色/褪色时间(1.8/2.4 s), 而且具有赝电容特性与机械柔韧性. 此外, 本文所开发的二维层状PANI墨水可以定制化设计并打印成各种图案, 并以此制备电化学控制的可寻址电致变色显示器. 这种二维层状PANI电致变色材料可进一步用于柔性和图案化ECD, 在新型光电显示领域具有较好的应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaissner R, Li J, Lu W, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv, 2021, 7: eabd9450

    Article  CAS  Google Scholar 

  2. Wang Y, Wang S, Wang X, et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat Mater, 2019, 18: 1335–1342

    Article  CAS  Google Scholar 

  3. Strand MT, Hernandez TS, Danner MG, et al. Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electro-deposition with high solar modulation. Nat Energy, 2021, 6: 546–554

    Article  CAS  Google Scholar 

  4. Ergoktas MS, Bakan G, Kovalska E, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat Photon, 2021, 15: 493–498

    Article  CAS  Google Scholar 

  5. Wang Z, Wang X, Cong S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nat Commun, 2020, 11: 302

    Article  CAS  Google Scholar 

  6. Davy NC, Sezen-Edmonds M, Gao J, et al. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat Energy, 2017, 2: 17104

    Article  CAS  Google Scholar 

  7. Ponder JF, Österholm AM, Reynolds JR. Conjugated polyelectrolytes as water processable precursors to aqueous compatible redox active polymers for diverse applications: Electrochromism, charge storage, and biocompatible organic electronics. Chem Mater, 2017, 29: 4385–4392

    Article  CAS  Google Scholar 

  8. Li D, Lai WY, Zhang YZ, et al. Printable transparent conductive films for flexible electronics. Adv Mater, 2018, 30: 1704738

    Article  CAS  Google Scholar 

  9. Zhou L, Yu M, Chen X, et al. Screen-printed poly(3,4-ethylenediox-ythiophene):poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv Funct Mater, 2018, 28: 1705955

    Article  CAS  Google Scholar 

  10. Gu Z, Huang Z, Li C, et al. A general printing approach for scalable growth of perovskite single-crystal films. Sci Adv, 2018, 4: eaat2390

    Article  CAS  Google Scholar 

  11. Gu Z, Zhou Z, Huang Z, et al. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Adv Mater, 2020, 32: 1908006

    Article  CAS  Google Scholar 

  12. Gu Z, Huang Z, Hu X, et al.In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices. ACS Appl Mater Interfaces, 2020, 12: 22157–22162

    Article  CAS  Google Scholar 

  13. Cheng T, Wu YW, Chen YL, et al. Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures. Small, 2019, 15: 1901830

    Article  CAS  Google Scholar 

  14. Liu X, Yu Z, Yu M, et al. Iridium(III)-complexed polydendrimers for inkjet-printing oleds: The influence of solubilizing steric hindrance groups. ACS Appl Mater Interfaces, 2019, 11: 26174–26184

    Article  CAS  Google Scholar 

  15. Derby B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu Rev Mater Res, 2010, 40: 395–414

    Article  CAS  Google Scholar 

  16. Kuang M, Wang L, Song Y. Controllable printing droplets for high-resolution patterns. Adv Mater, 2014, 26: 6950–6958

    Article  CAS  Google Scholar 

  17. Yang G, Zhang YM, Cai Y, et al. Advances in nanomaterials for electrochromic devices. Chem Soc Rev, 2020, 49: 8687–8720

    Article  CAS  Google Scholar 

  18. Li XG, Wang HY, Huang MR. Synthesis, film-forming, and electronic properties of o-phenylenediamine copolymers displaying an uncommon tricolor. Macromolecules, 2007, 40: 1489–1496

    Article  CAS  Google Scholar 

  19. Pietsch M, Rödlmeier T, Schlisske S, et al. Inkjet-printed polymer-based electrochromic and electrofluorochromic dual-mode displays. J Mater Chem C, 2019, 7: 7121–7127

    Article  CAS  Google Scholar 

  20. Chiolerio A, Bocchini S, Porro S. Inkjet printed negative supercapacitors: Synthesis of polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv Funct Mater, 2014, 24: 3375–3383

    Article  CAS  Google Scholar 

  21. Tang P, Xie L, Xiong X, et al. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer. ACS Appl Mater Interfaces, 2020, 12: 13087–13095

    Article  CAS  Google Scholar 

  22. Cai G, Darmawan P, Cheng X, et al. Inkjet printed large area multifunctional smart windows. Adv Energy Mater, 2017, 7: 1602598

    Article  CAS  Google Scholar 

  23. Teo MY, Stuart L, Devaraj H, et al. The in situ synthesis of conductive polyaniline patterns using micro-reactive inkjet printing. J Mater Chem C, 2019, 7: 2219–2224

    Article  CAS  Google Scholar 

  24. Hu G, Yang L, Yang Z, et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci Adv, 2020, 6: eaba5029

    Article  CAS  Google Scholar 

  25. Song D, Mahajan A, Secor EB, et al. High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano, 2017, 11: 7431–7439

    Article  CAS  Google Scholar 

  26. Jang J, Ha J, Cho J. Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv Mater, 2007, 19: 1772–1775

    Article  CAS  Google Scholar 

  27. Ngamna O, Morrin A, Killard AJ, et al. Inkjet printable polyaniline nanoformulations. Langmuir, 2007, 23: 8569–8574

    Article  CAS  Google Scholar 

  28. Shim GH, Han MG, Sharp-Norton JC, et al. Inkjet-printed electro-chromic devices utilizing polyaniline-silica and poly(3,4-ethylenedioxythiophene)-silica colloidal composite particles. J Mater Chem, 2008, 18: 594–601

    Article  CAS  Google Scholar 

  29. Small WR, Masdarolomoor F, Wallace GG, et al. Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. J Mater Chem, 2007, 17: 4359–4361

    Article  CAS  Google Scholar 

  30. Liu R, Fan S, Xiao D, et al. Free-standing single-molecule thick crystals consisting of linear long-chain polymers. Nano Lett, 2017, 17: 1655–1659

    Article  CAS  Google Scholar 

  31. Li R, Ma X, Li J, et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat Commun, 2021, 12: 1587

    Article  CAS  Google Scholar 

  32. Huang X, Niu Q, Fan S, et al. Highly oriented lamellar polyaniline with short-range disorder for enhanced electrochromic performance. Chem Eng J, 2021, 417: 128126

    Article  CAS  Google Scholar 

  33. Barpuzary D, Kim K, Park MJ. Two-dimensional growth of large-area conjugated polymers on ice surfaces: High conductivity and photoelectrochemical applications. ACS Nano, 2019, 13: 3953–3963

    Article  CAS  Google Scholar 

  34. Zhang T, Qi H, Liao Z, et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat Commun, 2019, 10: 4225

    Article  CAS  Google Scholar 

  35. Choi IY, Lee J, Ahn H, et al. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew Chem Int Ed, 2015, 54: 10497–10501

    Article  CAS  Google Scholar 

  36. Bergin SD, Sun Z, Rickard D, et al. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano, 2009, 3: 2340–2350

    Article  CAS  Google Scholar 

  37. Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met, 1992, 48: 91–97

    Article  CAS  Google Scholar 

  38. Li S, Cao Y, Xue Z. Soluble polyaniline. Synth Met, 1987, 20: 141–149

    Article  CAS  Google Scholar 

  39. Shacklette LW, Han CC. Solubility and dispersion characteristics of polyaniline. MRS Proc, 1993, 328: 157–166

    Article  Google Scholar 

  40. Andreatta A, Cao Y, Chiang JC, et al. Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid. Synth Met, 1988, 26: 383–389

    Article  CAS  Google Scholar 

  41. Gul S, Shah AHA, Bilal S. Synthesis and characterization of processable polyaniline salts. J Phys-Conf Ser, 2013, 439: 012002

    Article  CAS  Google Scholar 

  42. Huang K, Wan M. Self-assembled polyaniline nanostructures with photoisomerization function. Chem Mater, 2002, 14: 3486–3492

    Article  CAS  Google Scholar 

  43. Wu CG, Yeh YR, Chen JY, et al. Electroless surface polymerization of ordered conducting polyaniline films on aniline-primed substrates. Polymer, 2001, 42: 2877–2885

    Article  CAS  Google Scholar 

  44. Šeděnková I, Trchová M, Blinova NV, et al. In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 2006, 515: 1640–1646

    Article  CAS  Google Scholar 

  45. Basavaiah K, Pavankumar Y, Rao AVP. A facile one-step synthesis of PTSA-doped tetraaniline nanostructure/magnetite nanoparticles via self-assembly method. J Nanostruct Chem, 2013, 3: 74

    Article  Google Scholar 

  46. Tkachenko LI, Nikolaeva GV, Ryabenko AG, et al. One-step synthesis of the polyaniline-single-walled carbon tubes nanocomposite in formic acid and its electrochemical properties. Prot Met Phys Chem Surf, 2018, 54: 617–623

    Article  CAS  Google Scholar 

  47. Yue J, Epstein AJ. XPS study of self-doped conducting polyaniline and parent systems. Macromolecules, 1991, 24: 4441–4445

    Article  CAS  Google Scholar 

  48. Shao Y, Fu JH, Cao Z, et al. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors. ACS Nano, 2020, 14: 7308–7318

    Article  CAS  Google Scholar 

  49. Weng SC, Fuh AYG, Tang FC, et al. Effect of surface condition on liquid crystal photoalignment by light-induced AZO dye adsorption phenomena. Liquid Crysts, 2016, 43: 1221–1229

    Article  CAS  Google Scholar 

  50. Álvarez E, Vázquez G, Sánchez-Vilas M, et al. Surface tension of organic acids + water binary mixtures from 20°C to 50°C. J Chem Eng Data, 1997, 42: 957–960

    Article  Google Scholar 

  51. Hu CW, Kawamoto T, Tanaka H, et al. Water processable Prussian blue-polyaniline:polystyrene sulfonate nanocomposite (PB-PANI:PSS) for multi-color electrochromic applications. J Mater Chem C, 2016, 4: 10293–10300

    Article  CAS  Google Scholar 

  52. Cai G, Cheng X, Layani M, et al. Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy, 2018, 49: 147–154

    Article  CAS  Google Scholar 

  53. Zhang L, Chao D, Yang P, et al. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv Energy Mater, 2020, 10: 2000142

    Article  CAS  Google Scholar 

  54. Yu F, Liu W, Ke SW, et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat Commun, 2020, 11: 5534

    Article  CAS  Google Scholar 

  55. Xia X, Chao D, Qi X, et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett, 2013, 13: 4562–4568

    Article  CAS  Google Scholar 

  56. Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater, 2020, 5: 5–19

    Article  Google Scholar 

  57. Bai Z, Li R, Li K, et al. Transparent metal-organic framework-based gel electrolytes for generalized assembly of quasi-solid-state electrochromic devices. ACS Appl Mater Interfaces, 2020, 12: 42955–42961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Cooperation Fund of the Science and Technology Commission of Shanghai (19520744500), the National Natural Science Foundation of China (51903045 and 52173031), the Program of Shanghai Academic/Technology Research Leader (20XD1400100), the Basic Research Project of the Science and Technology Commission of Shanghai (21JC1400100), and the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020048). We thank Dr. Renwei Liu (Shimadzu) for the help in AFM and XPS characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang Y and Fan S conceived and directed this research; Huang X performed the experiments, analyzed the data, and wrote the manuscript; Chen J conducted TEM and SAED measurements of PANI; Xie H performed the tensile and torsional experiments of ECDs; Zhao F constructed the screen-printed conductive silver line in the seven-segment display. The manuscript was written through the contributions of all authors. All authors gave approval to the final version of the manuscript.

Corresponding authors

Correspondence to Suna Fan  (范苏娜) or Yaopeng Zhang  (张耀鹏).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Xiangyu Huang is a PhD candidate at the College of Materials Science and Engineering, Donghua University (DHU). His current research interests are electrochromic devices and dynamic optical devices based on conjugated polymers.

Suna Fan is an associate professor at the College of Materials Science and Engineering, DHU. She received her PhD degree in materials physics and chemistry from Jilin University, in 2017. From 2017 to 2018, she was an assistant professor at Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS) (renamed as Wenzhou Institute, University of CAS in 2019). She joined DHU in 2018. Her interest is focusing on conducting polymers and silk-based smart materials.

Yaopeng Zhang is a professor at the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, DHU. He received his PhD degree in materials science from DHU in 2002. From 2004 to 2007, he was a postdoctoral research fellow at Kawamura Institute of Chemical Research, Japan. He served as a visiting scholar at Akita University, Japan, and Stony Brook University, USA, respectively. His current research is focusing on silk materials for bioelectronic and biomedical applications.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Chen, J., Xie, H. et al. Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Sci. China Mater. 65, 2217–2226 (2022). https://doi.org/10.1007/s40843-022-2037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2037-4

Keywords

Navigation