Skip to main content
Log in

From liquid metal to stretchable electronics: Overcoming the surface tension

从液态金属到柔性电子器件: 克服表面张力

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The field of stretchable electronics mainly includes electronic products conformal with tissues, being integrated into skin or clothing. Since these products need to work during deformation, their requirements for materials focus on stretchability and conductivity. Liquid metals are excellent materials with these properties. However, liquid metals have extremely high surface tension at room temperature, which will spontaneously form a spherical shape and are difficult to form the shape required by stretchable devices, which is the biggest obstacle to their development in this emerging field. Therefore, the emphasis is placed on the principle of overcoming the high surface tension in this review, and various methods of using liquid metals to fabricate stretchable electronic devices based on these principles have been linked. Liquid metals show promise in the convenience of sensing, energy harvesting, etc. The existing challenges and opportunities are also discussed here.

摘要

可伸缩电子领域主要包括可以集成在皮肤或服装表面的电子产品. 由于这些产品需要在变形期间工作, 因此它们对材料的需求集中在可拉伸性和导电性. 液态金属正是兼具这些属性的优良的材料. 但是, 液态金属在常温下有极高的表面张力, 会自发的形成球状而难以被控制来形成柔性电子器件所需要的形状, 这是其向柔性电子领域发展的最大阻碍. 因此, 本综述将重点放在克服液态金属高表面张力的原理上, 基于这些原理所使用液态金属制作柔性电子器件的各种方法被串联了起来. 克服了表面张力的阻碍后, 液态金属在传感、 能量收集等方面有巨大的前景. 在此还讨论了目前该领域存在的挑战和机遇.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  CAS  Google Scholar 

  2. Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health, 2012, 45: 344–352

    Article  Google Scholar 

  3. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med, 2003, 349: 1731–1737

    Article  CAS  Google Scholar 

  4. Kim JH, Kim S, So JH, et al. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces, 2018, 10: 17448–17454

    Article  CAS  Google Scholar 

  5. Liu T, Sen P, Kim CJ. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst, 2012, 21: 443–450

    Article  CAS  Google Scholar 

  6. Anderson TJ, Ansara I. The Ga-In (gallium-indium) system. J Phase Equilib, 1991, 12: 64–72

    Article  CAS  Google Scholar 

  7. Neumann TV, Dickey MD. Liquid metal direct write and 3D printing: A review. Adv Mater Technol, 2020, 5: 2000070

    Article  CAS  Google Scholar 

  8. Cheng S, Wu Z. Microfluidic electronics. Lab Chip, 2012, 12: 2782

    Article  CAS  Google Scholar 

  9. Jacob AR, Parekh DP, Dickey MD, et al. Interfacial rheology of gallium-based liquid metals. Langmuir, 2019, 35: 11774–11783

    Article  CAS  Google Scholar 

  10. Tang SY, Tabor C, Kalantar-Zadeh K, et al. Gallium liquid metal: The Devil’s elixir. Annu Rev Mater Res, 2021, 51: 381–408

    Article  CAS  Google Scholar 

  11. Kim DH, Rogers JA. Stretchable electronics: Materials strategies and devices. Adv Mater, 2008, 20: 4887–4892

    Article  CAS  Google Scholar 

  12. Qi D, Liu Y, Liu Z, et al. Design of architectures and materials in inplane micro-supercapacitors: Current status and future challenges. Adv Mater, 2017, 29: 1602802

    Article  CAS  Google Scholar 

  13. Nathan A, Ahnood A, Cole MT, et al. Flexible electronics: The next ubiquitous platform. Proc IEEE, 2012, 100: 1486–1517

    Article  Google Scholar 

  14. Yang Y, Sun N, Wen Z, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano, 2018, 12: 2027–2034

    Article  CAS  Google Scholar 

  15. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun, 2020, 11: 3537

    Article  CAS  Google Scholar 

  16. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: A comprehensive review. Chem Rev, 2019, 119: 5461–5533

    Article  CAS  Google Scholar 

  17. Shim JS, Rogers JA, Kang SK. Physically transient electronic materials and devices. Mater Sci Eng-R-Rep, 2021, 145: 100624

    Article  Google Scholar 

  18. Wang M, Wang T, Luo Y, et al. Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv Funct Mater, 2021, 31: 2008807

    Article  CAS  Google Scholar 

  19. Xu S, Jayaraman A, Rogers JA. Skin sensors are the future of health care. Nature, 2019, 571: 319–321

    Article  CAS  Google Scholar 

  20. Ghaffari R, Yang DS, Kim J, et al. State of sweat: Emerging wearable systems for real-time, noninvasive sweat sensing and analytics. ACS Sens, 2021, 6: 2787–2801

    Article  CAS  Google Scholar 

  21. Matsuhisa N, Jiang Y, Liu Z, et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv Electron Mater, 2019, 5: 1900347

    Article  CAS  Google Scholar 

  22. Bandodkar AJ, Jeang WJ, Ghaffari R, et al. Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem, 2019, 12: 1–22

    Article  Google Scholar 

  23. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5: 3132

    Article  CAS  Google Scholar 

  24. Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech, 2011, 6: 788–792

    Article  CAS  Google Scholar 

  25. Amjadi M, Kyung KU, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv Funct Mater, 2016, 26: 1678–1698

    Article  CAS  Google Scholar 

  26. Hammock ML, Chortos A, Tee BCK, et al. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Article  CAS  Google Scholar 

  27. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Article  CAS  Google Scholar 

  28. Kim D, Thissen P, Viner G, et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces, 2013, 5: 179–185

    Article  CAS  Google Scholar 

  29. Xie W, Allioux FM, Ou JZ, et al. Gallium-based liquid metal particles for therapeutics. Trends Biotechnol, 2021, 39: 624–640

    Article  CAS  Google Scholar 

  30. Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res, 2021, 2: 1093–1103

    Article  CAS  Google Scholar 

  31. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: Fundamentals and applications in chemistry. Chem Soc Rev, 2018, 47: 4073–4111

    Article  CAS  Google Scholar 

  32. Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Interfaces, 2014, 6: 18369–18379

    Article  CAS  Google Scholar 

  33. Regan MJ, Tostmann H, Pershan PS, et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B, 1997, 55: 10786–10790

    Article  CAS  Google Scholar 

  34. Zavabeti A, Ou JZ, Carey BJ, et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358: 332–335

    Article  CAS  Google Scholar 

  35. Syed N, Zavabeti A, Messalea KA, et al. Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J Am Chem Soc, 2019, 141: 104–108

    Article  CAS  Google Scholar 

  36. Li G, Wu X, Lee DW. Selectively plated stretchable liquid metal wires for transparent electronics. Sens Actuat B-Chem, 2015, 221: 1114–1119

    Article  CAS  Google Scholar 

  37. Kramer RK, Boley JW, Stone HA, et al. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. Langmuir, 2014, 30: 533–539

    Article  CAS  Google Scholar 

  38. Khan MR, Eaker CB, Bowden EF, et al. Giant and switchable surface activity of liquid metal via surface oxidation. Proc Natl Acad Sci USA, 2014, 111: 14047–14051

    Article  CAS  Google Scholar 

  39. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater, 2017, 29: 1606425

    Article  CAS  Google Scholar 

  40. Park YG, Lee GY, Jang J, et al. Liquid metal-based soft electronics for wearable healthcare. Adv Healthcare Mater, 2021, 10: 2002280

    Article  CAS  Google Scholar 

  41. Ladd C, So JH, Muth J, et al. 3D printing of free standing liquid metal microstructures. Adv Mater, 2013, 25: 5081–5085

    Article  CAS  Google Scholar 

  42. Boley JW, White EL, Chiu GTC, et al. Direct writing of galliumindium alloy for stretchable electronics. Adv Funct Mater, 2014, 24: 3501–3507

    Article  CAS  Google Scholar 

  43. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv, 2013, 3: 112117

    Article  CAS  Google Scholar 

  44. Jeong SH, Hagman A, Hjort K, et al. Liquid alloy printing of microfluidic stretchable electronics. Lab Chip, 2012, 12: 4657

    Article  CAS  Google Scholar 

  45. Kramer RK, Majidi C, Wood RJ. Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv Funct Mater, 2013, 23: 5292–5296

    Article  CAS  Google Scholar 

  46. Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces, 2016, 8: 15459–15465

    Article  CAS  Google Scholar 

  47. Cumby BL, Hayes GJ, Dickey MD, et al. Reconfigurable liquid metal circuits by laplace pressure shaping. Appl Phys Lett, 2012, 101: 174102

    Article  CAS  Google Scholar 

  48. Fassler A, Majidi C. 3D structures of liquid-phase gain alloy embedded in PDMS with freeze casting. Lab Chip, 2013, 13: 4442

    Article  CAS  Google Scholar 

  49. Park YL, Chen BR, Wood RJ. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens J, 2012, 12: 2711–2718

    Article  CAS  Google Scholar 

  50. Dickey MD, Chiechi RC, Larsen RJ, et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater, 2008, 18: 1097–1104

    Article  CAS  Google Scholar 

  51. So JH, Dickey MD. Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip, 2011, 11: 905

    Article  CAS  Google Scholar 

  52. Zhao W, Bischof JL, Hutasoit J, et al. Single-fluxon controlled resistance switching in centimeter-long superconducting gallium-indium eutectic nanowires. Nano Lett, 2015, 15: 153–158

    Article  CAS  Google Scholar 

  53. Fassler A, Majidi C. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics. Smart Mater Struct, 2013, 22: 055023

    Article  CAS  Google Scholar 

  54. Gozen BA, Tabatabai A, Ozdoganlar OB, et al. High-density softmatter electronics with micron-scale line width. Adv Mater, 2014, 26: 5211–5216

    Article  CAS  Google Scholar 

  55. Zhou LY, Fu JZ, Gao Q, et al. All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks. Adv Funct Mater, 2020, 30: 1906683

    Article  CAS  Google Scholar 

  56. Pan C, Markvicka EJ, Malakooti MH, et al. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv Mater, 2019, 31: 1900663

    Article  CAS  Google Scholar 

  57. Park M, Park J, Jeong U. Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014, 9: 244–260

    Article  CAS  Google Scholar 

  58. Hohman JN, Kim M, Wadsworth GA, et al. Directing substrate morphology via self-assembly: Ligand-mediated scission of galliumindium microspheres to the nanoscale. Nano Lett, 2011, 11: 5104–5110

    Article  CAS  Google Scholar 

  59. Lin Y, Cooper C, Wang M, et al. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small, 2015, 11: 6397–6403

    Article  CAS  Google Scholar 

  60. Mou L, Qi J, Tang L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small, 2020, 16: 2005336

    Article  CAS  Google Scholar 

  61. Silva CA, Lv J, Yin L, et al. Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv Funct Mater, 2020, 30: 2002041

    Article  CAS  Google Scholar 

  62. Tutika R, Kmiec S, Haque ABMT, et al. Liquid metal-elastomer soft composites with independently controllable and highly tunable droplet size and volume loading. ACS Appl Mater Interfaces, 2019, 11: 17873–17883

    Article  CAS  Google Scholar 

  63. Dong R, Wang L, Hang C, et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small, 2021, 17: 2006612

    Article  CAS  Google Scholar 

  64. Lin Y, Genzer J, Li W, et al. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecenealt-maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10: 19871–19878

    Article  CAS  Google Scholar 

  65. Kwon KY, Truong VK, Krisnadi F, et al. Surface modification of gallium-based liquid metals: Mechanisms and applications in biomedical sensors and soft actuators. Adv Intelligent Syst, 2021, 3: 2000159

    Article  Google Scholar 

  66. Jeong SH, Hjort K, Wu Z. Tape transfer printing of a liquid metal alloy for stretchable RF electronics. Sensors, 2014, 14: 16311–16321

    Article  CAS  Google Scholar 

  67. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater, 2021, 20: 859–868

    Article  CAS  Google Scholar 

  68. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater, 2015, 27: 1928–1932

    Article  CAS  Google Scholar 

  69. Çınar S, Tevis ID, Chen J, et al. Mechanical fracturing of core-shell undercooled metal particles for heat-free soldering. Sci Rep, 2016, 6: 21864

    Article  CAS  Google Scholar 

  70. Tevis ID, Newcomb LB, Thuo M. Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (slice). Langmuir, 2014, 30: 14308–14313

    Article  CAS  Google Scholar 

  71. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater, 2015, 27: 2355–2360

    Article  CAS  Google Scholar 

  72. Thelen J, Dickey MD, Ward T. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip, 2012, 12: 3961

    Article  CAS  Google Scholar 

  73. Hutter T, Bauer WAC, Elliott SR, et al. Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv Funct Mater, 2012, 22: 2624–2631

    Article  CAS  Google Scholar 

  74. Tang SY, Joshipura ID, Lin Y, et al. Liquid-metal microdroplets formed dynamically with electrical control of size and rate. Adv Mater, 2016, 28: 604–609

    Article  CAS  Google Scholar 

  75. Wang Q, Yu Y, Yang J, et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater, 2015, 27: 7109–7116

    Article  CAS  Google Scholar 

  76. Rashed Khan M, Hayes GJ, So JH, et al. A frequency shifting liquid metal antenna with pressure responsiveness. Appl Phys Lett, 2011, 99: 013501

    Article  CAS  Google Scholar 

  77. Pourghorban Saghati A, Batra JS, Kameoka J, et al. A miniaturized microfluidically reconfigurable coplanar waveguide bandpass filter with maximum power handling of 10 watts. IEEE Trans Microwave Theor Techn, 2015, 63: 2515–2525

    Article  CAS  Google Scholar 

  78. Wang M, Trlica C, Khan MR, et al. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J Appl Phys, 2015, 117: 194901

    Article  CAS  Google Scholar 

  79. Mazlouman SJ, Jiang X, Mahanfar A, et al. A reconfigurable patch antenna using liquid metal embedded in a silicone substrate. IEEE Trans Antennas Propagat, 2011, 59: 4406–4412

    Article  Google Scholar 

  80. Jobs M, Hjort K, Rydberg A, et al. A tunable spherical cap microfluidic electrically small antenna. Small, 2013, 9: 3230

    CAS  Google Scholar 

  81. Hayes GJ, So JH, Qusba A, et al. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans Antennas Propagat, 2012, 60: 2151–2156

    Article  Google Scholar 

  82. Aïssa B, Nedil M, Habib MA, et al. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency. Appl Phys Lett, 2013, 103: 063101

    Article  CAS  Google Scholar 

  83. Entesari K, Saghati AP. Fluidics in microwave components. IEEE Microwave, 2016, 17: 50–75

    Article  Google Scholar 

  84. Cheng S, Rydberg A, Hjort K, et al. Liquid metal stretchable un-balanced loop antenna. Appl Phys Lett, 2009, 94: 144103

    Article  CAS  Google Scholar 

  85. Koo C, LeBlanc BE, Kelley M, et al. Manipulating liquid metal droplets in microfluidic channels with minimized skin residues toward tunable RF applications. J Microelectromech Syst, 2015, 24: 1069–1076

    Article  CAS  Google Scholar 

  86. Cheng S, Wu Z. Microfluidic stretchable RF electronics. Lab Chip, 2010, 10: 3227

    Article  CAS  Google Scholar 

  87. King AJ, Patrick JF, Sottos NR, et al. Microfluidically switched frequency-reconfigurable slot antennas. Antennas Wirel Propag Lett, 2013, 12: 828–831

    Article  Google Scholar 

  88. Saghati AP, Batra JS, Kameoka J, et al. Miniature and reconfigurable CPW folded slot antennas employing liquid-metal capacitive loading. IEEE Trans Antennas Propagat, 2015, 63: 3798–3807

    Article  Google Scholar 

  89. So JH, Thelen J, Qusba A, et al. Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater, 2009, 19: 3632–3637

    Article  CAS  Google Scholar 

  90. Kubo M, Li X, Kim C, et al. Stretchable microfluidic radiofrequency antennas. Adv Mater, 2010, 22: 2749–2752

    Article  CAS  Google Scholar 

  91. Kim MG, Alrowais H, Pavlidis S, et al. Size-scalable and high-density liquid-metal-based soft electronic passive components and circuits using soft lithography. Adv Funct Mater, 2017, 27: 1604466

    Article  CAS  Google Scholar 

  92. Lu T, Wissman J, Ruthika J, et al. Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl Mater Interfaces, 2015, 7: 26923–26929

    Article  CAS  Google Scholar 

  93. Zhu S, So JH, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater, 2013, 23: 2308–2314

    Article  CAS  Google Scholar 

  94. Cooper CB, Arutselvan K, Liu Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv Funct Mater, 2017, 27: 1605630

    Article  CAS  Google Scholar 

  95. Mitraka E, Kergoat L, Khan ZU, et al. Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators. J Mater Chem C, 2015, 3: 7604–7611

    Article  CAS  Google Scholar 

  96. Lu T, Markvicka EJ, Jin Y, et al. Soft-matter printed circuit board with UV laser micropatterning. ACS Appl Mater Interfaces, 2017, 9: 22055–22062

    Article  CAS  Google Scholar 

  97. Hammond FL, Kramer RK, Wan Q, et al. Soft tactile sensor arrays for force feedback in micromanipulation. IEEE Sens J, 2014, 14: 1443–1452

    Article  Google Scholar 

  98. Overvelde JTB, Mengüç Y, Polygerinos P, et al. Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mech Lett, 2014, 1: 42–46

    Article  Google Scholar 

  99. Park J, You I, Shin S, et al. Material approaches to stretchable strain sensors. ChemPhysChem, 2015, 16: 1155–1163

    Article  CAS  Google Scholar 

  100. Tabatabai A, Fassler A, Usiak C, et al. Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir, 2013, 29: 6194–6200

    Article  CAS  Google Scholar 

  101. Han YL, Liu H, Ouyang C, et al. Liquid on paper: Rapid prototyping of soft functional components for paper electronics. Sci Rep, 2015, 5: 11488

    Article  Google Scholar 

  102. Kim B, Jang J, You I, et al. Interfacing liquid metals with stretchable metal conductors. ACS Appl Mater Interfaces, 2015, 7: 7920–7926

    Article  CAS  Google Scholar 

  103. Park YL, Majidi C, Kramer R, et al. Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng, 2010, 20: 125029

    Article  CAS  Google Scholar 

  104. Tepáyotl-Ramírez D, Lu T, Park YL, et al. Collapse of triangular channels in a soft elastomer. Appl Phys Lett, 2013, 102: 044102

    Article  CAS  Google Scholar 

  105. Yan H, Chen Y, Deng Y, et al. Coaxial printing method for directly writing stretchable cable as strain sensor. Appl Phys Lett, 2016, 109: 083502

    Article  CAS  Google Scholar 

  106. Tavakoli M, Lopes P, Lourenco J, et al. Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sens J, 2017, 17: 5669–5677

    Article  Google Scholar 

  107. Li G, Lee DW. An advanced selective liquid-metal plating technique for stretchable biosensor applications. Lab Chip, 2017, 17: 3415–3421

    Article  CAS  Google Scholar 

  108. Park W, Ro K, Kim S, et al. A soft sensor-based three-dimensional (3-D) finger motion measurement system. Sensors, 2017, 17: 420

    Article  Google Scholar 

  109. Cheng S, Wu Z. A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv Funct Mater, 2011, 21: 2282–2290

    Article  CAS  Google Scholar 

  110. Majidi C, Kramer R, Wood RJ. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater Struct, 2011, 20: 105017

    Article  Google Scholar 

  111. Yan J, Lu Y, Chen G, et al. Advances in liquid metals for biomedical applications. Chem Soc Rev, 2018, 47: 2518–2533

    Article  CAS  Google Scholar 

  112. Sodhi RNS, Brodersen P, Cademartiri L, et al. Surface and buried interface layer studies on challenging structures as studied by ARXPS. Surf Interface Anal, 2017, 49: 1309–1315

    Article  CAS  Google Scholar 

  113. Xu Q, Oudalov N, Guo Q, et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys Fluids, 2012, 24: 063101

    Article  CAS  Google Scholar 

  114. Lin Y, Liu Y, Genzer J, et al. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem Sci, 2017, 8: 3832–3837

    Article  CAS  Google Scholar 

  115. Khan MR, Trlica C, So JH, et al. Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl Mater Interfaces, 2014, 6: 22467–22473

    Article  CAS  Google Scholar 

  116. Helseth LE. Interdigitated electrodes based on liquid metal encapsulated in elastomer as capacitive sensors and triboelectric nanogenerators. Nano Energy, 2018, 50: 266–272

    Article  CAS  Google Scholar 

  117. Teng L, Ye S, Handschuh-Wang S, et al. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv Funct Mater, 2019, 29: 1808739

    Article  CAS  Google Scholar 

  118. Khondoker MAH, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct, 2016, 25: 093001

    Article  CAS  Google Scholar 

  119. Kim D, Yoon Y, Kauh SK, et al. Towards sub-microscale liquid metal patterns: Cascade phase change mediated pick-n-place transfer of liquid metals printed and stretched over a flexible substrate. Adv Funct Mater, 2018, 28: 1800380

    Article  CAS  Google Scholar 

  120. Yan S, Li Y, Zhao Q, et al. Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab Chip, 2018, 18: 785–792

    Article  CAS  Google Scholar 

  121. Hodes M, Rui Zhang M, Lam LS, et al. On the potential of galinstan-based minichannel and minigap cooling. IEEE Trans Compon Packag Manufact Technol, 2014, 4: 46–56

    Article  Google Scholar 

  122. Yu S, Kaviany M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J Chem Phys, 2014, 140: 064303

    Article  CAS  Google Scholar 

  123. Korson L, Drost-Hansen W, Millero FJ. Viscosity of water at various temperatures. J Phys Chem, 1969, 73: 34–39

    Article  CAS  Google Scholar 

  124. Qi D, Liu Z, Liu Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv Mater, 2015, 27: 5559–5566

    Article  CAS  Google Scholar 

  125. Qi D, Liu Z, Liu Y, et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv Mater, 2017, 29: 1702800

    Article  CAS  Google Scholar 

  126. Qi D, Liu Z, Yu M, et al. Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv Mater, 2015, 27: 3145–3151

    Article  CAS  Google Scholar 

  127. Choi WM, Song J, Khang DY, et al. Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett, 2007, 7: 1655–1663

    Article  CAS  Google Scholar 

  128. Fan JA, Yeo WH, Su Y, et al. Fractal design concepts for stretchable electronics. Nat Commun, 2014, 5: 3266

    Article  CAS  Google Scholar 

  129. Liu Z, Qi D, Hu G, et al. Surface strain redistribution on structure-dmicrofibers to enhance sensitivity of fiber-shaped stretchable strainsensors. Adv Mater, 2018, 30: 1704229

    Article  CAS  Google Scholar 

  130. Qi D, Zhang K, Tian G, et al. Stretchable electronics based on PDMS substrates. Adv Mater, 2021, 33: 2003155

    Article  CAS  Google Scholar 

  131. Qi D, Liu Z, Leow WR, et al. Elastic substrates for stretchable devices. MRS Bull, 2017, 42: 103–107

    Article  Google Scholar 

  132. Huang S, Liu Y, Zhao Y, et al. Flexible electronics: Stretchable electrodes and their future. Adv Funct Mater, 2019, 29: 1805924

    Article  CAS  Google Scholar 

  133. Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun, 2016, 7: 12744

    Article  CAS  Google Scholar 

  134. Fan YJ, Meng XS, Li HY, et al. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater, 2017, 29: 1603115

    Article  CAS  Google Scholar 

  135. Tang P, Yan H, Chen L, et al. Anisotropic nanocomposite hydrogels with enhanced actuating performance through aligned polymer networks. Sci China Mater, 2020, 63: 832–841

    Article  CAS  Google Scholar 

  136. Keplinger C, Sun JY, Foo CC, et al. Stretchable, transparent, ionic conductors. Science, 2013, 341: 984–987

    Article  CAS  Google Scholar 

  137. Wang K, Zhang X, Sun X, et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci China Mater, 2016, 59: 412–420

    Article  CAS  Google Scholar 

  138. Bai J, Wang R, Ju M, et al. Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. Sci China Mater, 2021, 64: 942–952

    Article  CAS  Google Scholar 

  139. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science, 2017, 356: eaaf3627

    Article  CAS  Google Scholar 

  140. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev, 2019, 48: 1642–1667

    Article  CAS  Google Scholar 

  141. Bao Z, Gao M, Sun Y, et al. The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. Mater Sci Eng-C, 2020, 111: 110796

    Article  CAS  Google Scholar 

  142. Tian G, Liu Y, Yu M, et al. Electrostatic interaction-based high tissue adhesive, stretchable microelectrode arrays for the electrophysiological interface. ACS Appl Mater Interfaces, 2022, 14: 4852–4861

    Article  CAS  Google Scholar 

  143. Guo R, Yao S, Sun X, et al. Semi-liquid metal and adhesion-selection enabled rolling and transfer (smart) printing: A general method towards fast fabrication of flexible electronics. Sci China Mater, 2019, 62: 982–994

    Article  Google Scholar 

  144. Chen S, Ding Y, Zhang Q, et al. Controllable dispersion and reunion of liquid metal droplets. Sci China Mater, 2019, 62: 407–415

    Article  CAS  Google Scholar 

  145. Wang J, Cai G, Li S, et al. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv Mater, 2018, 30: 1706157

    Article  CAS  Google Scholar 

  146. Guo H, Yeh MH, Zi Y, et al. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano, 2017, 11: 4475–4482

    Article  CAS  Google Scholar 

  147. Rayleigh L. On the instability of jets. Proc London Math Soc, 1878, s1–10: 4–13

    Article  Google Scholar 

  148. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature, 2016, 540: 371–378

    Article  CAS  Google Scholar 

  149. Parekh DP, Ladd C, Panich L, et al. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip, 2016, 16: 1812–1820

    Article  CAS  Google Scholar 

  150. Zheng Y, He ZZ, Yang J, et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep, 2015, 4: 4588

    Article  CAS  Google Scholar 

  151. Khondoker MAH, Ostashek A, Sameoto D. Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv Eng Mater, 2019, 21: 1900060

    Article  CAS  Google Scholar 

  152. Chou SY, Krauss PR, Renstrom PJ. Imprint lithography with 25-nanometer resolution. Science, 1996, 272: 85–87

    Article  CAS  Google Scholar 

  153. Khoshmanesh K, Tang SY, Zhu JY, et al. Liquid metal enabled microfluidics. Lab Chip, 2017, 17: 974–993

    Article  CAS  Google Scholar 

  154. Kim HJ, Maleki T, Wei P, et al. A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J Microelectromech Syst, 2009, 18: 138–146

    Article  CAS  Google Scholar 

  155. Kim HJ, Son C, Ziaie B. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett, 2008, 92: 011904

    Article  CAS  Google Scholar 

  156. Joshipura ID, Ayers HR, Majidi C, et al. Methods to pattern liquid metals. J Mater Chem C, 2015, 3: 3834–3841

    Article  CAS  Google Scholar 

  157. Nijhuis CA, Reus WF, Whitesides GM. Molecular rectification in metal-SAM-metal oxide-metal junctions. J Am Chem Soc, 2009, 131: 17814–17827

    Article  CAS  Google Scholar 

  158. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano, 2019, 13: 9122–9130

    Article  CAS  Google Scholar 

  159. Song H, Kim T, Kang S, et al. Ga-based liquid metal micro/nanoparticles: Recent advances and applications. Small, 2020, 16: 1903391

    Article  CAS  Google Scholar 

  160. Bartlett MD, Kazem N, Powell-Palm MJ, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA, 2017, 114: 2143–2148

    Article  CAS  Google Scholar 

  161. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces, 2018, 10: 28232–28241

    Article  CAS  Google Scholar 

  162. Cutinho J, Chang BS, Oyola-Reynoso S, et al. Autonomous thermaloxidative composition inversion and texture tuning of liquid metal surfaces. ACS Nano, 2018, 12: 4744–4753

    Article  CAS  Google Scholar 

  163. Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci, 1999, 29: 295–326

    Article  CAS  Google Scholar 

  164. Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater, 2010, 22: 1039–1059

    Article  CAS  Google Scholar 

  165. Flint EB, Suslick KS. The temperature of cavitation. Science, 1991, 253: 1397–1399

    Article  CAS  Google Scholar 

  166. Lear TR, Hyun SH, Boley JW, et al. Liquid metal particle popping: Macroscale to nanoscale. Extreme Mech Lett, 2017, 13: 126–134

    Article  Google Scholar 

  167. Farrell ZJ, Tabor C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir, 2018, 34: 234–240

    Article  CAS  Google Scholar 

  168. Finkenauer LR, Lu Q, Hakem IF, et al. Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets. Langmuir, 2017, 33: 9703–9710

    Article  CAS  Google Scholar 

  169. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater, 2021, 20: 533–540

    Article  CAS  Google Scholar 

  170. Kim E, Baek J. Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model. Phys Fluids, 2012, 24: 082103

    Article  CAS  Google Scholar 

  171. Gannarapu A, Gozen BA. Freeze-printing of liquid metal alloys for manufacturing of 3D, conductive, and flexible networks. Adv Mater Technol, 2016, 1: 1600047

    Article  CAS  Google Scholar 

  172. Ozutemiz KB, Wissman J, Ozdoganlar OB, et al. EGaIn-metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interfaces, 2018, 5: 1701596

    Article  CAS  Google Scholar 

  173. Grahame DC. The electrical double layer and the theory of electrocapillarity.. Chem Rev, 1947, 41: 441–501

    Article  CAS  Google Scholar 

  174. Guo H, Han Y, Zhao W, et al. Universally autonomous self-healing elastomer with high stretchability. Nat Commun, 2020, 11: 2037

    Article  CAS  Google Scholar 

  175. Wang C, Liu N, Allen R, et al. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater, 2013, 25: 5785–5790

    Article  CAS  Google Scholar 

  176. Palleau E, Reece S, Desai SC, et al. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater, 2013, 25: 1589–1592

    Article  CAS  Google Scholar 

  177. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater, 2021, 20: 851–858

    Article  CAS  Google Scholar 

  178. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv Funct Mater, 2019, 29: 1907063

    Article  CAS  Google Scholar 

  179. Kuo CM, Lin CH, Huang YC. Plastic deformation mechanism of pure copper at low homologous temperatures. Mater Sci Eng-A, 2005, 396: 360–368

    Article  CAS  Google Scholar 

  180. Jeong SH, Hjort K, Wu Z. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci Rep, 2015, 5: 8419

    Article  CAS  Google Scholar 

  181. Lazarus N, Meyer CD, Bedair SS, et al. Multilayer liquid metal stretchable inductors. Smart Mater Struct, 2014, 23: 085036

    Article  CAS  Google Scholar 

  182. Qusba A, RamRakhyani AK, So JH, et al. On the design of microfluidic implant coil for flexible telemetry system. IEEE Sens J, 2014, 14: 1074–1080

    Article  Google Scholar 

  183. Chen J, Zhang J, Luo Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl Mater Interfaces, 2020, 12: 22200–22211

    Article  CAS  Google Scholar 

  184. Wang C, He K, Li J, et al. Conformal electrodes for on-skin digitalization. SmartMat, 2021, 2: 252–262

    Article  Google Scholar 

  185. Zhou K, Dai K, Liu C, et al. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat, 2020, 1

  186. Yi F, Wang X, Niu S, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci Adv, 2016, 2: e1501624

    Article  CAS  Google Scholar 

  187. Ina K, Koizumi H. Penetration of liquid metals into solid metals and liquid metal embrittlement. Mater Sci Eng-A, 2004, 387–389: 390–394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52173237 and 51903068) and the Natural Science Foundation of Heilongjiang Province, China (YQ2020E001).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang Z wrote the draft; Yang D, Zhao X, Zhao Q, Zhu M, and Liu Y provided some meaningful suggestions for the draft writing; Qi D modified this review article and led the project.

Corresponding author

Correspondence to Dianpeng Qi  (齐殿鹏).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Zixu Yang received his BSc degree in chemical engineering and technology in 2019 from Harbin Institute of Technology. He is pursuing his MSc degree in chemical engineering and technology in Prof. Qi’s laboratory. His research focuses on the application of stretchable electronics based on liquid metal.

Dianpeng Qi received his BSc degree in chemistry in 2007 and PhD degree in physical chemistry in 2012 from Jilin University (China). From 2012 to 2018, he was a postdoctoral fellow at the School of Materials Science and Engineering, Nanyang Technological University, Singapore. He joined Harbin Institute of Technology in 2018, and currently he is a full professor at the School of Chemistry and Chemical Engineering. His research focuses on the flexible electronics for bio-electrophysiology, bio-medical electronics, bio-interfacial sensing and energy conversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yang, D., Zhao, X. et al. From liquid metal to stretchable electronics: Overcoming the surface tension. Sci. China Mater. 65, 2072–2088 (2022). https://doi.org/10.1007/s40843-021-2023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-2023-x

Keywords

Navigation