Skip to main content
Log in

Organic crystal-based flexible smart materials

有机晶体基柔性智能材料

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Although the famous brittle characteristics of molecular crystals are unfavorable when they are used as flexible smart materials (FSMs), an increasing number of organic crystal-based FSMs have been reported recently. This breaks the perception of their stiff and brittle properties and promises a bright future for basic research and practical applications. Crystalline smart materials present considerable advantages over polymer materials under certain circumstances, rendering them potential candidates for certain applications, such as rapidly responsive actuators, ON/OFF switching, and microrobots. In this review, we summarize the recent developments in the field of organic crystal-based FSMs, including the derivatives of azobenzene, diarylethene, anthracene, and olefin. These organic crystal-based FSMs can bend, curl, twist, deform, or respond otherwise to external stimuli, such as heat or light. The detailed mechanisms of their smart behaviors are discussed with their potential applications in exciting intelligent fields. We believe this review could provide guidelines toward future fabrication and developments for novel organic crystal-based FSMs and their advanced smart applications.

摘要

虽然分子晶体显著的脆性特征不利于其在柔性智能材料中的应用, 但近些年越来越多的有机分子晶体基柔性智能材料(FSMs)被报道, 打破了人们对分子晶体刚性和脆性的认识, 这为分子晶体的基础研究和实际应用创造了发展契机. 在某些情况下, 晶体基智能材料相比于聚合物材料具有相当大的优势, 这使其成为某些应用的潜在候选材料, 例如快速响应制动器、 开/关切换、 微型机器人等. 在这篇综述中, 我们总结了有机晶体基FSMs的最新发展, 包括偶氮苯、 二芳基乙烯、 蒽、 烯烃等的衍生物. 这些有机晶体基FSMs可以发生弯曲、 卷曲、 扭曲、 变形或以其他方式来响应外部刺激. 并讨论了此类材料的柔性智能行为的机理以及其在智能领域中的潜在应用. 我们相信这篇综述可以为新型有机晶体基FSMs的制备、 发展及其先进的智能应用提供指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armon S, Efrati E, Kupferman R, et al. Geometry and mechanics in the opening of chiral seed pods. Science, 2011, 333: 1726–1730

    Article  CAS  Google Scholar 

  2. Yuk H, Lin S, Ma C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun, 2017, 8: 14230

    Article  CAS  Google Scholar 

  3. Bisoyi HK, Li Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications. Chem Rev, 2016, 116: 15089–15166

    Article  CAS  Google Scholar 

  4. Wang L, Li Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem Soc Rev, 2018, 47: 1044–1097

    Article  CAS  Google Scholar 

  5. Li C, Wang K, Li J, et al. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater Lett, 2020, 2: 779–797

    Article  CAS  Google Scholar 

  6. Yu F, Liu W, Li B, et al. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew Chem Int Ed, 2019, 58: 16101–16104

    Article  CAS  Google Scholar 

  7. Wang Z, Yu F, Chen W, et al. Rational control of charge transfer excitons toward high-contrast reversible mechanoresponsive luminescent switching. Angew Chem Int Ed, 2020, 59: 17580–17586

    Article  CAS  Google Scholar 

  8. Zhu W, Zhang X, Hu W. Molecular cocrystal odyssey to unconventional electronics and photonics. Sci Bull, 2021, 66: 512–520

    Article  CAS  Google Scholar 

  9. Geng Y, Zhao Y, Zhao J, et al. Optical and electrical modulation in ultraviolet photodetectors based on organic one-dimensional photochromic arrays. SmartMat, 2021, 2: 388–397

    Article  Google Scholar 

  10. Wang Y, Sun L, Wang C, et al. Organic crystalline materials in flexible electronics. Chem Soc Rev, 2019, 48: 1492–1530

    Article  CAS  Google Scholar 

  11. Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem Rev, 2014, 114: 12174–12277

    Article  CAS  Google Scholar 

  12. Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater, 2020, 32: 1905966

    Article  CAS  Google Scholar 

  13. de Las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev, 2005, 34: 276–285

    Article  Google Scholar 

  14. Naumov P, Chizhik S, Panda MK, et al. Mechanically responsive molecular crystals. Chem Rev, 2015, 115: 12440–12490

    Article  CAS  Google Scholar 

  15. She P, Qin Y, Wang X, et al. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv Mater, 2021, 2101175

  16. Takanabe A, Tanaka M, Johmoto K, et al. Optical activity and optical anisotropy in photomechanical crystals of chiral salicylidenephenylethylamines. J Am Chem Soc, 2016, 138: 15066–15077

    Article  CAS  Google Scholar 

  17. Liu G, Liu J, Ye X, et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew Chem Int Ed, 2017, 56: 198–202

    Article  CAS  Google Scholar 

  18. Sun Y, Lei Y, Dong H, et al. Solvatomechanical bending of organic charge transfer cocrystal. J Am Chem Soc, 2018, 140: 6186–6189

    Article  CAS  Google Scholar 

  19. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev, 2015, 115: 8704–8735

    Article  CAS  Google Scholar 

  20. Dong Y, Wang L, Wang J, et al. Graphene-based helical micromotors constructed by “microscale liquid rope-coil effect” with microfluidics. ACS Nano, 2020, 14: 16600–16613

    Article  CAS  Google Scholar 

  21. Wang S, Xu Z, Wang T, et al. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene. Nat Commun, 2018, 9: 1737

    Article  CAS  Google Scholar 

  22. Liu Z, Wang HI, Narita A, et al. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film. J Am Chem Soc, 2017, 139: 9443–9446

    Article  CAS  Google Scholar 

  23. Zhang Q, Zhang J, Wan S, et al. Stimuli-responsive 2D materials beyond graphene. Adv Funct Mater, 2018, 28: 1802500

    Article  CAS  Google Scholar 

  24. Wang DH, Lee KM, Yu Z, et al. Photomechanical response of glassy azobenzene polyimide networks. Macromolecules, 2011, 44: 3840–3846

    Article  CAS  Google Scholar 

  25. Lee KM, Wang DH, Koerner H, et al. Enhancement of photogenerated mechanical force in azobenzene-functionalized polyimides. Angew Chem Int Ed, 2012, 51: 4117–4121

    Article  CAS  Google Scholar 

  26. Moulin E, Faour L, Carmona-Vargas CC, et al. From molecular machines to stimuli-responsive materials. Adv Mater, 2020, 32: 1906036

    Article  CAS  Google Scholar 

  27. Nath NK, Panda MK, Sahoo SC, et al. Thermally induced and photoinduced mechanical effects in molecular single crystals—A revival. CrystEngComm, 2014, 16: 1850–1858

    Article  CAS  Google Scholar 

  28. Lipomi DJ, Tee BCK, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23: 1771–1775

    Article  CAS  Google Scholar 

  29. Abakumov GA, Nevodchikov VI. Thermomechanical and photomechanical effects in the crystals of complexes with free radicals. Dokl Phys Chem, 1982, 266: 1407–1410

    CAS  Google Scholar 

  30. Boldyreva EV, Sidelnikov AA, Chupakhin AP, et al. Deformation and mechanical fragmentation of the crystals [Co(NH3)5NO2]X2 (X = Cl, Br, NO3) in the course of linkage photoisomerization. Dokl Phys Chem, 1984, 277: 893–896

    CAS  Google Scholar 

  31. Ivanov FI, Urban NA. Mechanism of photomechanical deformation of β-lead azide whisker crystals. Reactivity Solids, 1986, 1: 165–170

    Article  Google Scholar 

  32. Al-Kaysi RO, Müller AM, Bardeen CJ. Photochemically driven shape changes of crystalline organic nanorods. J Am Chem Soc, 2006, 128: 15938–15939

    Article  CAS  Google Scholar 

  33. Kobatake S, Takami S, Muto H, et al. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature, 2007, 446: 778–781

    Article  CAS  Google Scholar 

  34. Uchida E, Azumi R, Norikane Y. Light-induced crawling of crystals on a glass surface. Nat Commun, 2015, 6: 7310

    Article  CAS  Google Scholar 

  35. Sun JK, Li W, Chen C, et al. Photoinduced bending of a large single crystal of a 1,2-bis(4-pyridyl)ethylene-based pyridinium salt powered by a [2+2] cycloaddition. Angew Chem Int Ed, 2013, 52: 6653–6657

    Article  CAS  Google Scholar 

  36. Tong F, Xu W, Al-Haidar M, et al. Photomechanically induced magnetic field response by controlling molecular orientation in 9-methylanthracene microcrystals. Angew Chem Int Ed, 2018, 57: 7080–7084

    Article  CAS  Google Scholar 

  37. Kitagawa D, Kobatake S. Photoreversible current ON/OFF switching by the photoinduced bending of gold-coated diarylethene crystals. Chem Commun, 2015, 51: 4421–4424

    Article  CAS  Google Scholar 

  38. Terao F, Morimoto M, Irie M. Light-driven molecular-crystal actuators: Rapid and reversible bending of rodlike mixed crystals of diarylethene derivatives. Angew Chem Int Ed, 2012, 51: 901–904

    Article  CAS  Google Scholar 

  39. Al-Kaysi RO, Zhu L, Al-Haidar M, et al. Chemical reaction method for growing photomechanical organic microcrystals. CrystEngComm, 2015, 17: 8835–8842

    Article  CAS  Google Scholar 

  40. Kim T, Zhu L, Mueller LJ, et al. Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. J Am Chem Soc, 2014, 136: 6617–6625

    Article  CAS  Google Scholar 

  41. Zhu L, Al-Kaysi RO, Bardeen CJ. Reversible photoinduced twisting of molecular crystal microribbons. J Am Chem Soc, 2011, 133: 12569–12575

    Article  CAS  Google Scholar 

  42. Morimoto M, Irie M. A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc, 2010, 132: 14172–14178

    Article  CAS  Google Scholar 

  43. Hatano E, Morimoto M, Hyodo K, et al. Photosalient effect of a diarylethene with a perfluorocyclohexene ring. Chem Eur J, 2016, 22: 12680–12683

    Article  CAS  Google Scholar 

  44. Cheng SC, Chen KJ, Suzaki Y, et al. Reversible laser-induced bending of pseudorotaxane crystals. J Am Chem Soc, 2018, 140: 90–93

    Article  CAS  Google Scholar 

  45. Kim T, Al-Muhanna MK, Al-Suwaidan SD, et al. Photoinduced curling of organic molecular crystal nanowires. Angew Chem, 2013, 125: 7027–7031

    Article  Google Scholar 

  46. Kitagawa D, Tsujioka H, Tong F, et al. Control of photomechanical crystal twisting by illumination direction. J Am Chem Soc, 2018, 140: 4208–4212

    Article  CAS  Google Scholar 

  47. Ghosh S, Mishra MK, Ganguly S, et al. Dual stress and thermally driven mechanical properties of the same organic crystal: 2,6-Dichlorobenzylidene-4-fluoro-3-nitroaniline. J Am Chem Soc, 2015, 137: 9912–9921

    Article  CAS  Google Scholar 

  48. Karothu DP, Weston J, Desta IT, et al. Shape-memory and self-healing effects in mechanosalient molecular crystals. J Am Chem Soc, 2016, 138: 13298–13306

    Article  CAS  Google Scholar 

  49. Kitagawa D, Kawasaki K, Tanaka R, et al. Mechanical behavior of molecular crystals induced by combination of photochromic reaction and reversible single-crystal-to-single-crystal phase transition. Chem Mater, 2017, 29: 7524–7532

    Article  CAS  Google Scholar 

  50. Taniguchi T, Sugiyama H, Uekusa H, et al. Walking and rolling of crystals induced thermally by phase transition. Nat Commun, 2018, 9: 538

    Article  CAS  Google Scholar 

  51. Samanta R, Ghosh S, Devarapalli R, et al. Visible light mediated photopolymerization in single crystals: Photomechanical bending and thermomechanical unbending. Chem Mater, 2018, 30: 577–581

    Article  CAS  Google Scholar 

  52. Rai R, Krishnan BP, Sureshan KM. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. Proc Natl Acad Sci USA, 2018, 115: 2896–2901

    Article  CAS  Google Scholar 

  53. Liu H, Ye K, Zhang Z, et al. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew Chem, 2019, 131: 19257–19262

    Article  Google Scholar 

  54. Bushuyev OS, Corkery TC, Barrett CJ, et al. Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation. Chem Sci, 2014, 5: 3158–3164

    Article  CAS  Google Scholar 

  55. Shi YX, Zhang WH, Abrahams BF, et al. Fabrication of photoactuators: Macroscopic photomechanical responses of metal-organic frameworks to irradiation by UV light. Angew Chem Int Ed, 2019, 58: 9453–9458

    Article  CAS  Google Scholar 

  56. Staveley LAK. Phase transitions in plastic crystals. Annu Rev Phys Chem, 1962, 13: 351–368

    Article  CAS  Google Scholar 

  57. Nangia AK, Desiraju GR. Crystal engineering: An outlook for the future. Angew Chem Int Ed, 2019, 58: 4100–4107

    Article  CAS  Google Scholar 

  58. Commins P, Karothu DP, Naumov P. Is a bent crystal still a single crystal? Angew Chem Int Ed, 2019, 58: 10052–10060

    Article  CAS  Google Scholar 

  59. Krishna GR, Devarapalli R, Lal G, et al. Mechanically flexible organic crystals achieved by introducing weak interactions in structure: Supramolecular shape synthons. J Am Chem Soc, 2016, 138: 13561–13567

    Article  CAS  Google Scholar 

  60. Catalano L, Karothu DP, Schramm S, et al. Dual-mode light transduction through a plastically bendable organic crystal as an optical waveguide. Angew Chem Int Ed, 2018, 57: 17254–17258

    Article  CAS  Google Scholar 

  61. Worthy A, Grosjean A, Pfrunder MC, et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat Chem, 2018, 10: 65–69

    Article  CAS  Google Scholar 

  62. Liu H, Lu Z, Tang B, et al. A flexible organic single crystal with plastic-twisting and elastic-bending capabilities and polarization-rotation function. Angew Chem, 2020, 132: 13044–13050

    Article  Google Scholar 

  63. Liu H, Lu Z, Zhang Z, et al. Highly elastic organic crystals for flexible optical waveguides. Angew Chem Int Ed, 2018, 57: 8448–8452

    Article  CAS  Google Scholar 

  64. Thompson AJ, Chamorro Orué AI, Nair AJ, et al. Elastically flexible molecular crystals. Chem Soc Rev, 2021, 50: 11725–11740

    Article  CAS  Google Scholar 

  65. Reddy CM, Gundakaram RC, Basavoju S, et al. Structural basis for bending of organic crystals. Chem Commun, 2005, 31: 3945

    Article  CAS  Google Scholar 

  66. Reddy CM, Rama Krishna G, Ghosh S. Mechanical properties of molecular crystals—Applications to crystal engineering. CrystEngComm, 2010, 12: 2296–2314

    Article  CAS  Google Scholar 

  67. Panda MK, Ghosh S, Yasuda N, et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat Chem, 2015, 7: 65–72

    Article  CAS  Google Scholar 

  68. Saha S, Desiraju GR. Crystal engineering of hand-twisted helical crystals. J Am Chem Soc, 2017, 139: 1975–1983

    Article  CAS  Google Scholar 

  69. Alimi LO, Lama P, Smith VJ, et al. Hand-twistable plastically deformable crystals of a rigid small organic molecule. Chem Commun, 2018, 54: 2994–2997

    Article  CAS  Google Scholar 

  70. Huang Y, Bisoyi HK, Huang S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew Chem Int Ed, 2021, 60: 11247–11251

    Article  CAS  Google Scholar 

  71. Saha S, Mishra MK, Reddy CM, et al. From molecules to interactions to crystal engineering: Mechanical properties of organic solids. Acc Chem Res, 2018, 51: 2957–2967

    Article  CAS  Google Scholar 

  72. Ahmed E, Karothu DP, Naumov P. Crystal adaptronics: Mechanically reconfigurable elastic and superelastic molecular crystals. Angew Chem Int Ed, 2018, 57: 8837–8846

    Article  CAS  Google Scholar 

  73. Hayashi S, Koizumi T. Elastic organic crystals of a fluorescent π-conjugated molecule. Angew Chem Int Ed, 2016, 55: 2701–2704

    Article  CAS  Google Scholar 

  74. Ghosh S, Mishra MK, Kadambi SB, et al. Designing elastic organic crystals: Highly flexible polyhalogenated N-benzylideneanilines. Angew Chem Int Ed, 2015, 54: 2674–2678

    Article  CAS  Google Scholar 

  75. Hayashi S, Asano A, Kamiya N, et al. Fluorescent organic single crystals with elastic bending flexibility: 1,4-Bis(thien-2-yl)-2,3,5,6-tetrafluorobenzene derivatives. Sci Rep, 2017, 7: 9453

    Article  CAS  Google Scholar 

  76. Hayashi S, Yamamoto SY, Takeuchi D, et al. Creating elastic organic crystals of n-conjugated molecules with bending mechanofluorochromism and flexible optical waveguide. Angew Chem Int Ed, 2018, 57: 17002–17008

    Article  CAS  Google Scholar 

  77. Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018, 360: 300–302

    Article  CAS  Google Scholar 

  78. Kitagawa D, Bardeen CJ, Kobatake S. Symmetry breaking and photomechanical behavior of photochromic organic crystals. Symmetry, 2020, 12: 1478

    Article  CAS  Google Scholar 

  79. Zhu L, Tong F, Al-Kaysi RO, et al. Photomechanical effects in photochromic crystals. In: White TJ (ed.). Photomechanical Materials, Composites, and Systems. Hoboken NJ: John Wiley & Sons, Inc., 2017, Chapter 7: 233–274

    Chapter  Google Scholar 

  80. von Delius M, Geertsema EM, Leigh DA. A synthetic small molecule that can walk down a track. Nat Chem, 2009, 2: 96–101

    Article  CAS  Google Scholar 

  81. Yu Q, Aguila B, Gao J, et al. Photomechanical organic crystals as smart materials for advanced applications. Chem Eur J, 2019, 25: 5611–5622

    Article  CAS  Google Scholar 

  82. Koshima H, Takechi K, Uchimoto H, et al. Photomechanical bending of salicylideneaniline crystals. Chem Commun, 2011, 47: 11423–11425

    Article  CAS  Google Scholar 

  83. Zhu L, Al-Kaysi RO, Dillon RJ, et al. Crystal structures and photophysical properties of 9-anthracene carboxylic acid derivatives for photomechanical applications. Cryst Growth Des, 2011, 11: 4975–4983

    Article  CAS  Google Scholar 

  84. Koshima H, Ojima N, Uchimoto H. Mechanical motion of azobenzene crystals upon photoirradiation. J Am Chem Soc, 2009, 131: 6890–6891

    Article  CAS  Google Scholar 

  85. Tong F, Kitagawa D, Bushnak I, et al. Light-powered autonomous flagella-like motion of molecular crystal microwires. Angew Chem Int Ed, 2021, 60: 2414–2423

    Article  CAS  Google Scholar 

  86. Irie M, Kobatake S, Horichi M. Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science, 2001, 291: 1769–1772

    Article  CAS  Google Scholar 

  87. Koshima H, Nakaya H, Uchimoto H, et al. Photomechanical motion of furylfulgide crystals. Chem Lett, 2012, 41: 107–109

    Article  CAS  Google Scholar 

  88. Zhu L, Al-Kaysi RO, Bardeen CJ. Photoinduced ratchet-like rotational motion of branched molecular crystals. Angew Chem Int Ed, 2016, 55: 7073–7076

    Article  CAS  Google Scholar 

  89. Nath NK, Runcevski T, Lai CY, et al. Surface and bulk effects in photochemical reactions and photomechanical effects in dynamic molecular crystals. J Am Chem Soc, 2015, 137: 13866–13875

    Article  CAS  Google Scholar 

  90. White TJ (eds.). Photomechanical Materials, Composites, and System: Wireless Transduction of Light into Work. Hoboken NJ: John Wiley & Sons, Inc., 2017

    Google Scholar 

  91. Kitagawa D, Nishi H, Kobatake S. Photoinduced twisting of a photochromic diarylethene crystal. Angew Chem, 2013, 52: 9320–9322

    Article  CAS  Google Scholar 

  92. Qin L, Liu X, Yu Y. Soft actuators of liquid crystal polymers fueled by light from ultraviolet to near infrared. Adv Opt Mater, 2021, 9: 2001743

    Article  CAS  Google Scholar 

  93. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev, 2012, 41: 1809–1825

    Article  CAS  Google Scholar 

  94. Koshima H, Ojima N. Photomechanical bending of 4-aminoazobenzene crystals. Dyes Pigments, 2012, 92: 798–801

    Article  CAS  Google Scholar 

  95. Bushuyev OS, Singleton TA, Barrett CJ. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv Mater, 2013, 25: 1796–1800

    Article  CAS  Google Scholar 

  96. Nath NK, Pejov L, Nichols SM, et al. Model for photoinduced bending of slender molecular crystals. J Am Chem Soc, 2014, 136: 2757–2766

    Article  CAS  Google Scholar 

  97. Bushuyev OS, Tomberg A, Friščić T, et al. Shaping crystals with light: Crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J Am Chem Soc, 2013, 135: 12556–12559

    Article  CAS  Google Scholar 

  98. Lee J, Oh S, Pyo J, et al. A light-driven supramolecular nanowire actuator. Nanoscale, 2015, 7: 6457–6461

    Article  CAS  Google Scholar 

  99. Ikegami T, Kageyama Y, Obara K, et al. Dissipative and autonomous square-wave self-oscillation of a macroscopic hybrid self-assembly under continuous light irradiation. Angew Chem, 2016, 128: 8379–8383

    Article  Google Scholar 

  100. Taniguchi T, Fujisawa J, Shiro M, et al. Mechanical motion of chiral azobenzene crystals with twisting upon photoirradiation. Chem Eur J, 2016, 22: 7950–7958

    Article  CAS  Google Scholar 

  101. Hao Y, Huang S, Guo Y, et al. Photoinduced multi-directional deformation of azobenzene molecular crystals. J Mater Chem C, 2019, 7: 503–508

    Article  CAS  Google Scholar 

  102. Tong F, Al-Haidar M, Zhu L, et al. Photoinduced peeling of molecular crystals. Chem Commun, 2019, 55: 3709–3712

    Article  CAS  Google Scholar 

  103. Zhu L, Tong F, Zaghloul N, et al. Characterization of a p-type photomechanical molecular crystal based on the EZ photoisomerization of 9-divinylanthracene malonitrile. J Mater Chem C, 2016, 4: 245–8252

    Google Scholar 

  104. Koshima H, Matsuo R, Matsudomi M, et al. Light-driven bending crystals of salicylidenephenylethylamines in enantiomeric and racemate forms. Cryst Growth Des, 2013, 13: 4330–4337

    Article  CAS  Google Scholar 

  105. Hatano E, Morimoto M, Imai T, et al. Photosalient phenomena that mimic impatiens are observed in hollow crystals of diarylethene with a perfluorocyclohexene ring. Angew Chem Int Ed, 2017, 56: 12576–12580

    Article  CAS  Google Scholar 

  106. Uchida K, Sukata S, Matsuzawa Y, et al. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem Commun, 2008, 326–328

  107. Kitagawa D, Tanaka R, Kobatake S. Dependence of photoinduced bending behavior of diarylethene crystals on irradiation wavelength of ultraviolet light. Phys Chem Chem Phys, 2015, 17: 27300–27305

    Article  CAS  Google Scholar 

  108. Nakagawa Y, Morimoto M, Yasuda N, et al. Photosalient effect of diarylethene crystals of thiazoyl and thienyl derivatives. Chem Eur J, 2019, 25: 7874–7880

    Article  CAS  Google Scholar 

  109. Kobatake S, Hasegawa H, Miyamura K. High-convertible photochromism of a diarylethene single crystal accompanying the crystal shape deformation. Cryst Growth Des, 2011, 11: 1223–1229

    Article  CAS  Google Scholar 

  110. Kitagawa D, Kobatake S. Crystal thickness dependence of photoinduced crystal bending of 1,2-bis(2-methyl-5-(4-(1-naphthoyloxymethyl)phenyl)-3-thienyl)perfluorocyclopentene. J Phys Chem C, 2013, 117: 20887–20892

    Article  CAS  Google Scholar 

  111. Kitagawa D, Kobatake S. Crystal thickness dependence of the photo-induced crystal bending of 1-(5-methyl-2-(4-(p-vinylbenzoyloxymethyl)phenyl)-4-thiazolyl)-2-(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene. Photochem Photobiol Sci, 2014, 13: 764–769

    Article  CAS  Google Scholar 

  112. Kitagawa D, Tanaka R, Kobatake S. Photoinduced stepwise bending behavior of photochromic diarylethene crystals. CrystEngComm, 2016, 18: 7236–7240

    Article  CAS  Google Scholar 

  113. Hirano A, Hashimoto T, Kitagawa D, et al. Dependence of photoinduced bending behavior of diarylethene crystals on ultraviolet irradiation power. Cryst Growth Des, 2017, 17: 4819–4825

    Article  CAS  Google Scholar 

  114. Dong X, Tong F, Hanson KM, et al. Hybrid organic-inorganic photon-powered actuators based on aligned diarylethene nanocrystals. Chem Mater, 2019, 31: 1016–1022

    Article  CAS  Google Scholar 

  115. Kajiya R, Sakakibara S, Ikawa H, et al. Inorganic-organic hybrid photomechanical crystals consisting of diarylethenes and cage siloxanes. Chem Mater, 2019, 31: 9372–9378

    Article  CAS  Google Scholar 

  116. Kitagawa D, Iwaihara C, Nishi H, et al. Quantitative evaluation of photoinduced bending speed of diarylethene crystals. Crystals, 2015, 5: 551–561

    Article  CAS  Google Scholar 

  117. Karunatilaka C, Bučar DK, Ditzler LR, et al. Softening and hardening of macro- and nano-sized organic cocrystals in a single-crystal transformation. Angew Chem Int Ed, 2011, 50: 8642–8646

    Article  CAS  Google Scholar 

  118. Al-Kaysi R, Bardeen C. Reversible photoinduced shape changes of crystalline organic nanorods. Adv Mater, 2007, 19: 1276–1280

    Article  CAS  Google Scholar 

  119. Good JT, Burdett JJ, Bardeen CJ. Using two-photon excitation to control bending motions in molecular-crystal nanorods. Small, 2009, 5: 2902–2909

    Article  CAS  Google Scholar 

  120. Al-Kaysi RO, Tong F, Al-Haidar M, et al. Highly branched photomechanical crystals. Chem Commun, 2017, 53: 2622–2625

    Article  CAS  Google Scholar 

  121. Koshima H, Uchimoto H, Taniguchi T, et al. Mechanical motion of molecular crystals induced by [4+4] photodimerisation. CrystEngComm, 2016, 18: 7305–7310

    Article  CAS  Google Scholar 

  122. Yu Q, Li M, Gao J, et al. Fabrication of large single crystals for platinum-based linear polymers with controlled-release and photoactuator performance. Angew Chem Int Ed, 2019, 58: 18634–18640

    Article  CAS  Google Scholar 

  123. Naumov P, Kowalik J, Solntsev KM, et al. Topochemistry and photomechanical effects in crystals of green fluorescent protein-like chromophores: Effects of hydrogen bonding and crystal packing. J Am Chem Soc, 2010, 132: 5845–5857

    Article  CAS  Google Scholar 

  124. Wang H, Chen P, Wu Z, et al. Bending, curling, rolling, and salient behavior of molecular crystals driven by [2+2] cycloaddition of a styrylbenzoxazole derivative. Angew Chem, 2017, 129: 9591–9595

    Article  Google Scholar 

  125. Zhang Y, Peng C, Cui B, et al. Direction-controlled light-driven movement of microribbons. Adv Mater, 2016, 28: 8538–8545

    Article  CAS  Google Scholar 

  126. Taniguchi T, Kubota A, Moritoki T, et al. Two-step photomechanical motion of a dibenzobarrelene crystal. RSC Adv, 2018, 8: 34314–34320

    Article  CAS  Google Scholar 

  127. Huang Y, Xing J, Gong Q, et al. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat Commun, 2019, 10: 169

    Article  CAS  Google Scholar 

  128. Huang Y, Wang Z, Chen Z, et al. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew Chem Int Ed, 2019, 58: 9696–9711

    Article  CAS  Google Scholar 

  129. Huang Y, Gong Q, Ge J, et al. Green grinding-coassembly engineering toward intrinsically luminescent tetracene in cocrystals. ACS Nano, 2020, 14: 15962–15972

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Huang Y, Gong Q, and Yu J acknowledge the AME Programmatic Funding Scheme of Cyber Physiochemical Interfaces (CPI) project (#A18A1b0045) and Singapore National Research Foundation Fellowship (NRF-NRFF11-2019-0004). Huang Y is thankful for the start-up funds of the Youth Talent Support Program from Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yu J and Huang Y contributed the whole concept; Huang Y and Gong Q wrote the main text. All authors contributed to the general discussion.

Corresponding author

Correspondence to Jing Yu  (俞璟).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yinjuan Huang received her PhD degree from Shanghai Jiao Tong University in July 2017. After that, she joined Nanyang Technological University as a research fellow in September 2017. In October 2021, she joined the School of Materials Science and Engineering of Xi’an Jiaotong University as a full professor. Her current research interest involves the design, synthesis and self-assembly of organic semiconducting functional materials, as well as their applications in photonics, optoelectronic devices, fluorescent sensors and biological fields.

Qiuyu Gong obtained his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences. He worked as an assistant professor during 2017–2018 at Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences. Then he worked as a research fellow at the School of Materials Science and Engineering, Nanyang Technological University in 2019–2021. His research interests focus on the development of molecular probes/soft materials for imaging and diagnosis, and chemical biology.

Jing Yu is a Nanyang assistant professor at the School of Materials Science and Engineering, Nanyang Technological University, Singapore. He obtained his PhD degree in chemical engineering from the University of California, Santa Barbara in 2012. The goal of Yu’s research is to characterize the dynamic properties of interfaces with hierarchical structures and gain molecular-level control of functional soft interfaces. He is a National Research Foundation Fellow of Singapore, Class of 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Gong, Q. & Yu, J. Organic crystal-based flexible smart materials. Sci. China Mater. 65, 1994–2016 (2022). https://doi.org/10.1007/s40843-021-1989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1989-8

Keywords

Navigation