Skip to main content
Log in

Flexible neuromorphic electronics based on low-dimensional materials

基于低维材料的柔性神经形态电子器件

  • Perspective
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

具有机械柔性和神经形态计算能力的柔性神经形态器件在仿生传感器、 类脑计算芯片、 可穿戴设备等领域具有广阔的应用前景, 因此受到了广泛的关注. 低维材料, 如石墨烯、 过渡金属二卤族化合物(TMDs)、 纳米线和纳米管等材料, 具有良好的可拉伸性和化学稳定性, 可作为制备柔性器件的理想材料. 本文系统地总结了一维和二维材料在柔性神经形态器件(包括两端忆阻器和三端突触型晶体管)中的应用, 讨论了基本材料性质、 器件结构和突触行为背后的开关机制, 并强调了在实际应用中实现神经形态电路的障碍和未来应用的广阔前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. Nat Mater, 2019, 18: 309–323

    Article  CAS  Google Scholar 

  2. Liu C, Chen H, Wang S, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15: 545–557

    Article  CAS  Google Scholar 

  3. Sangwan VK, Hersam MC. Neuromorphic nanoelectronic materials. Nat Nanotechnol, 2020, 15: 517–528

    Article  CAS  Google Scholar 

  4. Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater, 2019, 4: 150–168

    Article  CAS  Google Scholar 

  5. Sebastian A, Le Gallo M, Khaddam-Aljameh R, et al. Memory devices and applications for in-memory computing. Nat Nanotechnol, 2020, 15: 529–544

    Article  CAS  Google Scholar 

  6. Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotech, 2013, 8: 13–24

    Article  CAS  Google Scholar 

  7. Ding Y, Jiang W, Lou Q, et al. Hardware design and the competency awareness of a neural network. Nat Electron, 2020, 3: 514–523

    Article  Google Scholar 

  8. van de Burgt Y, Melianas A, Keene ST, et al. Organic electronics for neuromorphic computing. Nat Electron, 2018, 1: 386–397

    Article  Google Scholar 

  9. Pan X, Jin T, Gao J, et al. Stimuli-enabled artificial synapses for neuromorphic perception: Progress and perspectives. Small, 2020, 16: 2001504

    Article  CAS  Google Scholar 

  10. Yu H, Wei H, Gong J, et al. Evolution of bio-inspired artificial synapses: Materials, structures, and mechanisms. Small, 2021, 17: 2000041

    Article  CAS  Google Scholar 

  11. Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron, 2018, 1: 333–343

    Article  Google Scholar 

  12. Chen Q, Lin M, Wang Z, et al. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv Electron Mater, 2019, 5: 1800852

    Article  CAS  Google Scholar 

  13. Chen S, Noori S, Villena MA, et al. Memristive electronic synapses made by anodic oxidation. Chem Mater, 2019, 31: 8394–8401

    Article  CAS  Google Scholar 

  14. Wang Z, Joshi S, Savel’ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108

    Article  CAS  Google Scholar 

  15. Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  CAS  Google Scholar 

  16. Wang C, Liang SJ, Wang CY, et al. Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nat Nanotechnol, 2021, 16: 1079–1085

    Article  CAS  Google Scholar 

  17. Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366: 210–215

    Article  CAS  Google Scholar 

  18. Kuzum D, Jeyasingh RGD, Lee B, et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett, 2012, 12: 2179–2186

    Article  CAS  Google Scholar 

  19. Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2: 88–98

    Article  Google Scholar 

  20. Wang L, Wang X, Zhang Y, et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv Funct Mater, 2020, 30: 2004609

    Article  CAS  Google Scholar 

  21. Wang S, Liu L, Gan L, et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat Commun, 2021, 12: 53

    Article  CAS  Google Scholar 

  22. Wang Y, Zheng Y, Gao J, et al. Band-tailored van der waals heterostructure for multilevel memory and artificial synapse. InfoMat, 2021, 3: 917–928

    Article  CAS  Google Scholar 

  23. Jin T, Zheng Y, Gao J, et al. Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse. ACS Appl Mater Interfaces, 2021, 13: 10639–10649

    Article  CAS  Google Scholar 

  24. Huh W, Jang S, Lee JY, et al. 2D materials: Synaptic barristor based on phase-engineered 2D heterostructures. Adv Mater, 2018, 30: 1870266

    Article  Google Scholar 

  25. Nikam RD, Kwak M, Lee J, et al. Controlled ionic tunneling in lithium nanoionic synaptic transistor through atomically thin graphene layer for neuromorphic computing. Adv Electron Mater, 2020, 6: 1901100

    Article  CAS  Google Scholar 

  26. Hou YX, Li Y, Zhang ZC, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 2021, 15: 1497–1508

    Article  CAS  Google Scholar 

  27. Wang Y, Lv Z, Chen J, et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater, 2018, 30: 1802883

    Article  CAS  Google Scholar 

  28. Shi Y, Liang X, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron, 2018, 1: 458–465

    Article  Google Scholar 

  29. Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1: 130–136

    Article  CAS  Google Scholar 

  30. Liu H, Wu T, Yan X, et al. A tantalum disulfide charge-density-wave stochastic artificial neuron for emulating neural statistical properties. Nano Lett, 2021, 21: 3465–3472

    Article  CAS  Google Scholar 

  31. Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 2019, 29: 1903700

    Article  CAS  Google Scholar 

  32. Wang S, Zhang DW, Zhou P. Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci Bull, 2019, 64: 1056–1066

    Article  Google Scholar 

  33. Yang FS, Li M, Lee MP, et al. Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat Commun, 2020, 11: 2972

    Article  CAS  Google Scholar 

  34. Shao L, Wang H, Yang Y, et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl Mater Interfaces, 2019, 11: 12161–12169

    Article  CAS  Google Scholar 

  35. Sun J, Oh S, Choi Y, et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv Funct Mater, 2018, 28: 1804397

    Article  CAS  Google Scholar 

  36. Seo S, Jo SH, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun, 2018, 9: 5106

    Article  CAS  Google Scholar 

  37. Wang CY, Liang SJ, Wang S, et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci Adv, 2020, 6: eaba6173

    Article  Google Scholar 

  38. Wang S, Wang CY, Wang P, et al. Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl Sci Rev, 2021, 8

  39. Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem Soc Rev, 2018, 47: 3100–3128

    Article  CAS  Google Scholar 

  40. Niu T, Zhang J, Chen W. Surface engineering of two-dimensional materials. ChemNanoMat, 2019, 5: 6–23

    Article  CAS  Google Scholar 

  41. Qu TY, Sun Y, Chen ML, et al. A flexible carbon nanotube sen-memory device. Adv Mater, 2020, 32: 1907288

    Article  CAS  Google Scholar 

  42. Khan Y, Thielens A, Muin S, et al. A new frontier of printed electronics: Flexible hybrid electronics. Adv Mater, 2020, 32: 1905279

    Article  CAS  Google Scholar 

  43. Mohammed MG, Kramer R. All-printed flexible and stretchable electronics. Adv Mater, 2017, 29: 1604965

    Article  CAS  Google Scholar 

  44. Liu Z, Xu J, Chen D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015, 44: 161–192

    Article  CAS  Google Scholar 

  45. Shim H, Sim K, Ershad F, et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci Adv, 2019, 5: eaax4961

    Article  CAS  Google Scholar 

  46. Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology, 2008, 33: 18–41

    Article  Google Scholar 

  47. Burr GW, Shelby RM, Sebastian A, et al. Neuromorphic computing using non-volatile memory. Adv Phys-X, 2016, 2: 89–124

    Google Scholar 

  48. Jiang H, Zheng L, Liu Z, et al. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2019, 2: 1077–1094

    Article  CAS  Google Scholar 

  49. Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett, 2014, 9: 393

    Article  CAS  Google Scholar 

  50. Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388

    Article  CAS  Google Scholar 

  51. Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5: 9703–9709

    Article  CAS  Google Scholar 

  52. Yang JQ, Wang R, Ren Y, et al. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv Mater, 2020, 32: 2003610

    Article  CAS  Google Scholar 

  53. Wan CJ, Liu YH, Feng P, et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv Mater, 2016, 28: 5878–5885

    Article  CAS  Google Scholar 

  54. Schmidt H, Giustiniano F, Eda G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem Soc Rev, 2015, 44: 7715–7736

    Article  CAS  Google Scholar 

  55. Ahmed T, Kuriakose S, Mayes ELH, et al. Optically stimulated artificial synapse based on layered black phosphorus. Small, 2019, 15: 1900966

    Article  CAS  Google Scholar 

  56. Vu QA, Kim H, Nguyen VL, et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv Mater, 2017, 29: 1703363

    Article  CAS  Google Scholar 

  57. Seo S, Lee J-, Lee R-, et al. An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network. Adv Mater, 2021, 33: 2170316

    Article  CAS  Google Scholar 

  58. Lee Y, Oh JY, Xu W, et al. Stretchable organic optoelectronic sensorimotor synapse. Sci Adv, 2018, 4: eaat7387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U2032147 and 21872100), Singapore MOE Grant (MOE-T2EP50220-0001) and the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research) Singapore (A20G9b0135).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jin T wrote the paper under the supervision of Chen W; Gao J and Wang Y revised the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Wei Chen  (陈伟).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Tengyu Jin is now a PhD student in the group of Prof. Wei Chen, at the Department of Physics, National University of Singapore (NUS). He received his BSc degree (2016) and MSc degree (2019) in physics from Soochow University. His current research focuses on 2D materials-based electronics.

Wei Chen is currently a professor jointly at the Department of Chemistry and Department of Physics, NUS. He received his Bachelor degree in chemistry from Nanjing University in 2001 and PhD degree from Chemistry Department, NUS in 2004. His current research interests include the molecular-scale interface engineering for organic and 2D material-based electronics, optoelectronics, and interface-controlled nanocatalysis for energy and environmental research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Gao, J., Wang, Y. et al. Flexible neuromorphic electronics based on low-dimensional materials. Sci. China Mater. 65, 2154–2159 (2022). https://doi.org/10.1007/s40843-021-1979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1979-3

Navigation