Skip to main content
Log in

Defect-mediated Jahn-Teller effect in layered LiNiO2

层状LiNiO2中的缺陷调制Jahn-Teller效应

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

LiNiO2 (LNO)基态的晶体结构和电子结构长期以来存在着实验与理论计算不一致的争议. 实验上观测到LNO是空间群为\(R\overline3m\)的半导体并且有局部的Jahn-Teller (JT)畸变, 但理论计算却表明它是处于亚稳态的金属并且没有任何的JT畸变. 本文基于杂化密度泛函理论HSE06, 首次模拟了与实验等同浓度(~3%)的Ni/Li反位缺陷对LNO的影响, 发现缺陷能够有效调控LNO中的JT效应. 在LNO中引入Ni/Li反位缺陷后, 其结构发生了局部的JT畸变, 并且其带隙值约为0.5 eV, 这些计算结果都和实验现象非常吻合. Ni/Li反位通过粒径效应和库伦作用, 既能诱发JT畸变, 又能阻碍畸变之间的协同作用, 避免相变到C2/m, 而只产生局部的JT畸变. 本文提出了一种新的策略来解释LNO基态晶体结构和电子结构长期以来的争议, 对推动富镍层状材料的设计和应用具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Myung ST, Maglia F, Park KJ, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Lett, 2016, 2: 196–223

    Article  CAS  Google Scholar 

  2. Xu J, Lin F, Doeff MM, et al. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A, 2017, 5: 874–901

    Article  CAS  Google Scholar 

  3. Liu W, Oh P, Liu X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed, 2015, 54: 4440–4457

    Article  CAS  Google Scholar 

  4. Li W, Song B, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev, 2017, 46: 3006–3059

    Article  CAS  Google Scholar 

  5. Arai H. Characterization and cathode performance of Li1−xNi1+xO2 prepared with the excess lithium method. Solid State Ion, 1995, 80: 261–269

    Article  CAS  Google Scholar 

  6. Delmas C, Ménétrier M, Croguennec L, et al. Lithium batteries: A new tool in solid state chemistry. Int J Inorg Mater, 1999, 1: 11–19

    Article  CAS  Google Scholar 

  7. Li W, Reimers J, Dahn J. In situ X-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ion, 1993, 67: 123–130

    Article  CAS  Google Scholar 

  8. Chung JH, Proffen T, Shamoto S, et al. Local structure of LiNiO2 studied by neutron diffraction. Phys Rev B, 2005, 71: 064410

    Article  CAS  Google Scholar 

  9. Bianchini M, Roca-Ayats M, Hartmann P, et al. There and back again—The journey of LiNiO2 as a cathode active material. Angew Chem Int Ed, 2019, 58: 10434–10458

    Article  CAS  Google Scholar 

  10. Goodenough JB, Wickham DG, Croft WJ. Some magnetic and crystallographic properties of the system Li+xNi++1−2xNi+++1−xO. J Phys Chem Solids, 1958, 5: 107–116

    Article  CAS  Google Scholar 

  11. Galakhov VR, Kurmaev EZ, Uhlenbrock S, et al. Electronic structure of LiNiO2, LiFeO2 and LiCrO2: X-ray photoelectron and X-ray emission study. Solid State Commun, 1995, 95: 347–351

    Article  CAS  Google Scholar 

  12. Hirota K, Nakazawa Y, Ishikawa M. Magnetic properties of the S=1/2 antiferromagnetic triangular lattice LiNiO2. J Phys-Condens Matter, 1991, 3: 4721–4730

    Article  CAS  Google Scholar 

  13. Kanno R, Kubo H, Kawamoto Y, et al. Phase relationship and lithium deintercalation in lithium nickel oxides. J Solid State Chem, 1994, 110: 216–225

    Article  CAS  Google Scholar 

  14. Molenda J. Structural, electrical and electrochemical properties of LiNiO2. Solid State Ion, 2002, 146: 73–79

    Article  CAS  Google Scholar 

  15. Van Houten S. Semiconduction in LixNi1−xO. J Phys Chem Solids, 1960, 17: 7–17

    Article  Google Scholar 

  16. Momeni M, Yousefi Mashhour H, Kalantarian MM. New approaches to consider electrical properties, band gaps and rate capability of same-structured cathode materials using density of states diagrams: Layered oxides as a case study. J Alloys Compd, 2019, 787: 738–743

    Article  CAS  Google Scholar 

  17. Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B, 1991, 44: 943–954

    Article  CAS  Google Scholar 

  18. Evarestov RA, Veryazov VA, Tupitsyn II, et al. The electronic structure of crystalline nickel oxides. J Electron Spectr Relat Phenomena, 1994, 68: 555–563

    Article  CAS  Google Scholar 

  19. Korotin DM, Novoselov D, Anisimov VI. Paraorbital ground state of the trivalent Ni ion in LiNiO2 from DFT+DMFT calculations. Phys Rev B, 2019, 99: 045106

    Article  CAS  Google Scholar 

  20. Chakraborty A, Dixit M, Aurbach D, et al. Predicting accurate cathode properties of layered oxide materials using the scan meta-GGA density functional. npj Comput Mater, 2018, 4: 60

    Article  CAS  Google Scholar 

  21. Chen Z, Zou H, Zhu X, et al. First-principle investigation of Jahn-Teller distortion and topological analysis of chemical bonds in LiNiO2. J Solid State Chem, 2011, 184: 1784–1790

    Article  CAS  Google Scholar 

  22. Chen H, Freeman CL, Harding JH. Charge disproportionation and Jahn-Teller distortion in LiNiO2 and NaNiO2: A density functional theory study. Phys Rev B, 2011, 84: 085108

    Article  CAS  Google Scholar 

  23. Chappel E, Núñez-Regueiro MD, Chouteau G, et al. Study of the ferrodistorsive orbital ordering in NaNiO2 by neutron diffraction and submillimeter wave ESR. Eur Phys J B, 2000, 17: 615–622

    Article  CAS  Google Scholar 

  24. Rougier A, Delmas C, Chadwick AV. Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study. Solid State Commun, 1995, 94: 123–127

    Article  CAS  Google Scholar 

  25. Nakai I, Takahashi K, Shiraishi Y, et al. Study of the Jahn-Teller distortion in LiNiO2, a cathode material in a rechargeable lithium battery, by in situ X-ray absorption fine structure analysis. J Solid State Chem, 1998, 140: 145–148

    Article  CAS  Google Scholar 

  26. Delmas C, Pérès JP, Rougier A, et al. On the behavior of the LixNiO2 system: An electrochemical and structural overview. J Power Sources, 1997, 68: 120–125

    Article  CAS  Google Scholar 

  27. Borgers PF, Enz U. Metamagnetism of NaNiO2. Solid State Commun, 1966, 4: 153–157

    Article  Google Scholar 

  28. Meskine H, Satpathy S. Electronic structure and magnetism in sodium nickelate: Density-functional and model studies. Phys Rev B, 2005, 72: 224423

    Article  CAS  Google Scholar 

  29. Sicolo S, Mock M, Bianchini M, et al. And yet it moves: LiNiO2, a dynamic Jahn-Teller system. Chem Mater, 2020, 32: 10096–10103

    Article  CAS  Google Scholar 

  30. Radin MD, Van der Ven A. Simulating charge, spin, and orbital ordering: Application to Jahn-Teller distortions in layered transition-metal oxides. Chem Mater, 2018, 30: 607–618

    Article  CAS  Google Scholar 

  31. Das H, Urban A, Huang W, et al. First-principles simulation of the (Li-Ni-vacancy)O phase diagram and its relevance for the surface phases in Ni-rich Li-ion cathode materials. Chem Mater, 2017, 29: 7840–7851

    Article  CAS  Google Scholar 

  32. Cao J, Zou H, Guo C, et al. Local trimer orbital ordering in LiNiO2 studied by quantitative convergent beam electron diffraction technique. Solid State Ion, 2009, 180: 1209–1214

    Article  CAS  Google Scholar 

  33. Petit L, Stocks GM, Egami T, et al. Ground state valency and spin configuration of the Ni ions in nickelates. Phys Rev Lett, 2006, 97: 146405

    Article  CAS  Google Scholar 

  34. Koyama Y, Arai H, Tanaka I, et al. Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem Mater, 2012, 24: 3886–3894

    Article  CAS  Google Scholar 

  35. Toma T, Maezono R, Hongo K. Electrochemical properties and crystal structure of Li+/H+ cation-exchanged LiNiO2. ACS Appl Energy Mater, 2020, 3: 4078–4087

    Article  CAS  Google Scholar 

  36. Radin MD, Thomas JC, Van der Ven A. Order-disorder versus displacive transitions in Jahn-Teller active layered materials. Phys Rev Mater, 2020, 4: 043601

    Article  CAS  Google Scholar 

  37. Uchigaito H, Udagawa M, Motome Y. Mean-field study of charge, spin, and orbital orderings in triangular-lattice compounds ANiO2 (A = Na, Li, Ag). J Phys Soc Jpn, 2011, 80: 044705

    Article  CAS  Google Scholar 

  38. Hirano A. Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ion, 1995, 78: 123–131

    Article  CAS  Google Scholar 

  39. Rougier A, Gravereau P, Delmas C. Optimization of the composition of the Li1−zNi1+z O2 electrode materials: Structural, magnetic, and electrochemical studies. J Electrochem Soc, 1996, 143: 1168–1175

    Article  CAS  Google Scholar 

  40. Yamaura K, Takano M, Hirano A, et al. Magnetic properties of Li1−xNi1+xO2(0 ≲x≲ 0.08). J Solid State Chem, 1996, 127: 109–118

    Article  CAS  Google Scholar 

  41. Zheng J, Teng G, Xin C, et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J Phys Chem Lett, 2017, 8: 5537–5542

    Article  CAS  Google Scholar 

  42. Kim JM, Chung HT. The first cycle characteristics of Li[Ni1/3Co1/3-Mn1/3]O2 charged up to 4.7 V. Electrochim Acta, 2004, 49: 937–944

    Article  CAS  Google Scholar 

  43. Venkatraman S, Manthiram A. Structural and chemical characterization of layered Li1−xNi1−yMnyO2−δ (y = 0.25 and 0.5, and 0 ≤ (1 − x) ≤ 1) oxides. Chem Mater, 2003, 15: 5003–5009

    Article  CAS  Google Scholar 

  44. Gao A, Sun Y, Zhang Q, et al. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3Co1/3Mn1/3O2 cathode. J Mater Chem A, 2020, 8: 6337–6348

    Article  CAS  Google Scholar 

  45. Chen H, Dawson JA, Harding JH. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. J Mater Chem A, 2014, 2: 7988–7996

    Article  CAS  Google Scholar 

  46. Wang D, Kou R, Ren Y, et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv Mater, 2017, 29: 1606715

    Article  CAS  Google Scholar 

  47. Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140: 1862–1870

    Article  CAS  Google Scholar 

  48. Dahn J. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ion, 1990, 44: 87–97

    Article  CAS  Google Scholar 

  49. Reynaud F, Mertz D, Celestini F, et al. Orbital frustration at the origin of the magnetic behavior in LiNiO2. Phys Rev Lett, 2001, 86: 3638–3641

    Article  CAS  Google Scholar 

  50. Sturge MD. The Jahn-Teller Effect in Solids. New York: Academic Press, 1968

    Book  Google Scholar 

  51. Van Vleck JH. The Jahn-Teller effect and crystalline stark splitting for clusters of the form XY6. J Chem Phys, 1939, 7: 72–84

    Article  CAS  Google Scholar 

  52. Hase M, Terasaki I, Uchinokura K. Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. Phys Rev Lett, 1993, 70: 3651–3654

    Article  CAS  Google Scholar 

  53. Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal-lographica Section A, 1976, 32: 751–767

    Article  Google Scholar 

  54. Marianetti CA, Morgan D, Ceder G. First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions. Phys Rev B, 2001, 63: 224304

    Article  CAS  Google Scholar 

  55. Zhu X, Meng F, Zhang Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain, 2021, 4: 392–401

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Starting Fund of Peking University Shenzhen Graduate School and Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), and the National Natural Science Foundation of China (12174162). The authors thank Prof. Qihang Liu from Southern University of Science and Technology for the helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zheng J supervised this work. Lin W and Ye Y designed the idea and wrote the paper. Lin W, Ye Y, and Chen T performed the data analysis and visualization. All authors contributed to the general discussion and conceptualization.

Corresponding authors

Correspondence to Feng Pan  (潘锋) or Jiaxin Zheng  (郑家新).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Weicheng Lin received his BSc degree from Northeastern University in 2019. Now he is a master student under the supervision of Prof. Jiaxin Zheng at Peking University. His research interests include computational materials and energy materials.

Yaokun Ye received his BSc degree from Jinan University in 2018. Now he is a PhD candidate under the supervision of Prof. Jiaxin Zheng at Peking University. His research interests include computational materials and energy materials.

Feng Pan is the Chair-Professor, Founding Dean of School of Advanced Materials, Peking University Shenzhen Graduate School. He received his PhD from the Department of P&A Chemistry, University of Strathclyde, Glasgow, U.K., receiving the “Patrick D. Ritchie Prize” for the best PhD in 1994. Prof. Pan has been engaged in the fundamental research and product development of novel optoelectronic and energy storage materials and devices.

Jiaxin Zheng received his PhD in condensed physics from Peking University in 2013. He is currently working as an Associate Professor at the School of Advanced Materials, Peking University. His research interests include computational materials and energy materials.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Ye, Y., Chen, T. et al. Defect-mediated Jahn-Teller effect in layered LiNiO2. Sci. China Mater. 65, 1696–1700 (2022). https://doi.org/10.1007/s40843-021-1946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1946-9

Navigation