Skip to main content
Log in

The patchy growth mode: Modulation of the Au-Au interface via phenynyl ligands

“补丁”生长模式: 利用炔基配体调控金-金界面

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Surface ligands play critical roles in nano-synthesis and thus it is of great importance in expanding the scope of suitable ligands. In this work, we explore phenynyl ligands in modulating the Au-Au interface when growing Au domains on Au seeds. A patchy growth mode is observed where the emerging islands are flat-laying with holes and branches. This growth mode is distinctively different from the conventional facet-controlled growth using weak ligands, and the non-wetting island growth using strong ligands. Through manipulating the molecular structure and the packing of the phenynyl ligands on the Au seeds, the overgrown Au domains are continuously tuned, from patches to islands, extending the plasmon absorption peak into the near-infrared spectral range. We believe that the new ligand with intermediate affinity and the unusual growth mode would expand the control in both synthesis and application.

摘要

表面配体在纳米合成中起着关键作用, 扩大适用于纳米合成的配体范围具有重要意义. 本工作中, 我们系统研究了炔基配体在金种子上生长金时对金-金界面的调节作用. 我们观察到了一种新的“补丁”生 长模式: 具有孔洞以及分支的金补丁“平躺”在金种子表面. 这种生长模式与传统的弱配体控制的晶面生长以及强配体调控下的非润湿岛状生长截然不同. 通过控制炔基配体的分子结构及其在金种子表面的排列, 生长的金可以从补丁形状连续调节到岛状, 同时其等离子体共振吸收从可见光区扩展到了近红外光谱区域. 我们相信这类具有中等强度、 能够控制特殊生长模式的新配体的应用, 能够显著提升纳米合成及应用中的配体控制作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boles MA, Ling D, Hyeon T, et al. The surface science of nanocrystals. Nat Mater, 2016, 15: 141–153

    Article  CAS  Google Scholar 

  2. Zhu H, Prince E, Narayanan P, et al. Colloidal stability of nanoparticles stabilized with mixed ligands in solvents with varying polarity. Chem Commun, 2020, 56: 8131–8134

    Article  CAS  Google Scholar 

  3. Kang H, Buchman JT, Rodriguez RS, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev, 2019, 119: 664–699

    Article  CAS  Google Scholar 

  4. Zhan N, Palui G, Safi M, et al. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J Am Chem Soc, 2013, 135: 13786–13795

    Article  CAS  Google Scholar 

  5. Na HB, Palui G, Rosenberg JT, et al. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and bio-compatibility to iron oxide nanoparticles. ACS Nano, 2012, 6: 389–399

    Article  CAS  Google Scholar 

  6. Xue T, Lin Z, Chiu CY, et al. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. Sci Adv, 2017, 3: e1600615

    Article  CAS  Google Scholar 

  7. Ogiwara N, Kobayashi H, Inukai M, et al. Ligand-functionalization-controlled activity of metal-organic framework-encapsulated Pt nano-catalyst toward activation of water. Nano Lett, 2020, 20: 426–432

    Article  CAS  Google Scholar 

  8. Martínez-Prieto LM, Ferry A, Rakers L, et al. Long-chain NHC-stabi-lized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chem Commun, 2016, 52: 4768–4771

    Article  CAS  Google Scholar 

  9. Kabiraz MK, Kim J, Lee WJ, et al. Ligand effect of shape-controlled β-palladium hydride nanocrystals on liquid-fuel oxidation reactions. Chem Mater, 2019, 31: 5663–5673

    Article  CAS  Google Scholar 

  10. Levi-Belenkova T, Govorov AO, Markovich G. Orientation-sensitive peptide-induced plasmonic circular dichroism in silver nanocubes. J Phys Chem C, 2016, 120: 12751–12756

    Article  CAS  Google Scholar 

  11. Han B, Zhu Z, Li Z, et al. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J Am Chem Soc, 2014, 136: 16104–16107

    Article  CAS  Google Scholar 

  12. Li Y, Cheng J, Li J, et al. Tunable chiroptical properties from the plasmonic band to metal-ligand charge transfer band of cysteine-cap-ped molybdenum oxide nanoparticles. Angew Chem Int Ed, 2018, 57: 10236–10240

    Article  CAS  Google Scholar 

  13. Lee S, Sim K, Moon SY, et al. Controlled assembly of plasmonic na-noparticles: From static to dynamic nanostructures. Adv Mater, 2021, 33: 2007668

    Article  CAS  Google Scholar 

  14. Giansante C. Enhancing light absorption by colloidal metal chalco-genide quantum dots via chalcogenol(ate) surface ligands. Nanoscale, 2019, 11: 9478–9487

    Article  CAS  Google Scholar 

  15. Giansante C. Library design of ligands at the surface of colloidal na-nocrystals. Acc Chem Res, 2020, 53: 1458–1467

    Article  CAS  Google Scholar 

  16. Kroupa DM, Vörös M, Brawand NP, et al. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat Commun, 2017, 8: 15257

    Article  CAS  Google Scholar 

  17. Huang Z, Zhao ZJ, Zhang Q, et al. A welding phenomenon of dissimilar nanoparticles in dispersion. Nat Commun, 2019, 10: 219

    Article  CAS  Google Scholar 

  18. Wang Z, He B, Xu G, et al. Transformable masks for colloidal nano-synthesis. Nat Commun, 2018, 9: 563

    Article  CAS  Google Scholar 

  19. Wang F, Cheng S, Bao Z, et al. Anisotropic overgrowth of metal het-erostructures induced by a site-selective silica coating. Angew Chem Int Ed, 2013, 52: 10344–10348

    Article  CAS  Google Scholar 

  20. Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev, 2019, 119: 4819–4880

    Article  CAS  Google Scholar 

  21. Kim D, Lee DC. Surface ligands as permeation barrier in the growth and assembly of anisotropic semiconductor nanocrystals. J Phys Chem Lett, 2020, 11: 2647–2657

    Article  CAS  Google Scholar 

  22. Yang TH, Shi Y, Janssen A, et al. Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew Chem Int Ed, 2020, 59: 15378–15401

    Article  CAS  Google Scholar 

  23. Zhang Q, Li N, Goebl J, et al. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J Am Chem Soc, 2011, 133: 18931–18939

    Article  CAS  Google Scholar 

  24. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc, 2004, 126: 8648–8649

    Article  CAS  Google Scholar 

  25. Koczkur KM, Mourdikoudis S, Polavarapu L, et al. Poly-vinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans, 2015, 44: 17883–17905

    Article  CAS  Google Scholar 

  26. Xia X, Zeng J, Zhang Q, et al. Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C, 2012, 116: 21647–21656

    Article  CAS  Google Scholar 

  27. Wang Y, He J, Liu C, et al. Thermodynamics versus kinetics in nano-synthesis. Angew Chem Int Ed, 2015, 54: 2022–2051

    Article  CAS  Google Scholar 

  28. Feng Y, He J, Wang H, et al. An unconventional role of ligand in continuously tuning of metal-metal interfacial strain. J Am Chem Soc, 2012, 134: 2004–2007

    Article  CAS  Google Scholar 

  29. He J, Wang Y, Feng Y, et al. Forest of gold nanowires: A new type of nanocrystal growth. ACS Nano, 2013, 7: 2733–2740

    Article  CAS  Google Scholar 

  30. Wang Y, He J, Yu S, et al. Effect of thiolated ligands in Au nanowire synthesis. Small, 2017, 13: 1702121

    Article  CAS  Google Scholar 

  31. Feng Y, Wang Y, He J, et al. Achieving site-specificity in multistep colloidal synthesis. J Am Chem Soc, 2015, 137: 7624–7627

    Article  CAS  Google Scholar 

  32. Jia J, Liu G, Xu W, et al. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew Chem Int Ed, 2020, 59: 14443–14448

    Article  CAS  Google Scholar 

  33. Tian X, Zong J, Zhou Y, et al. Designing caps for colloidal Au nano-particles. Chem Sci, 2021, 12: 3644–3650

    Article  CAS  Google Scholar 

  34. Xiang T, Zong J, Xu W, et al. Probing the ligand exchange kinetics of phenynyl-based ligands on colloidal Au nanoparticles. Mater Chem Front, 2021, 5: 465–471

    Article  CAS  Google Scholar 

  35. Huang J, Liu C, Zhu Y, et al. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nat Nano-tech, 2015, 11: 60–66

    Article  CAS  Google Scholar 

  36. Huang J, Zhu Y, Liu C, et al. Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett, 2016, 16: 617–623

    Article  CAS  Google Scholar 

  37. Feng J, Xu D, Yang F, et al. Surface engineering and controlled ripening for seed-mediated growth of Au islands on Au nanocrystals. Angew Chem Int Ed, 2021, 60: 16958–16964

    Article  CAS  Google Scholar 

  38. Choueiri RM, Galati E, Thérien-Aubin H, et al. Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538: 79–83

    Article  CAS  Google Scholar 

  39. Zhou L, Qiu X, Lyu Z, et al. Pd-Au asymmetric nanopyramids: Lateral vs. vertical growth of Au on Pd decahedral seeds. Chem Mater, 2021, 33: 5391–5400

    Article  CAS  Google Scholar 

  40. Love JC, Estroff LA, Kriebel JK, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103–1170

    Article  CAS  Google Scholar 

  41. Wang G, Liu Y, Gao C, et al. Island growth in the seed-mediated overgrowth of monometallic colloidal nanostructures. Chem, 2017, 3: 678–690

    Article  CAS  Google Scholar 

  42. Zhou J, Jiang Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano, 2018, 12: 2643–2651

    Article  CAS  Google Scholar 

  43. Dhiman M, Maity A, Das A, et al. Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem Sci, 2019, 10: 6594–6603

    Article  CAS  Google Scholar 

  44. Patterson ML, Weaver MJ. Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: Simple alkenes and alkynes adsorbed at gold electrodes. J Phys Chem, 1985, 89: 5046–5051

    Article  CAS  Google Scholar 

  45. Tang Q, Jiang D. Insights into the PhC≡C/Au interface. J Phys Chem C, 2015, 119: 10804–10810

    Article  CAS  Google Scholar 

  46. Chen W, Zuckerman NB, Kang X, et al. Alkyne-protected ruthenium nanoparticles. J Phys Chem C, 2010, 114: 18146–18152

    Article  CAS  Google Scholar 

  47. Maity P, Tsunoyama H, Yamauchi M, et al. Organogold clusters protected by phenylacetylene. J Am Chem Soc, 2011, 133: 20123–20125

    Article  CAS  Google Scholar 

  48. Laurentius L, Stoyanov SR, Gusarov S, et al. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond. ACS Nano, 2011, 5: 4219–4227

    Article  CAS  Google Scholar 

  49. Sun F, Tang Q. First-principles exploration of the versatile configurations at an alkynyl-protected coinage metal(111) interface. Nanoscale, 2021, 13: 819–831

    Article  CAS  Google Scholar 

  50. Inkpen MS, Liu ZF, Li H, et al. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat Chem, 2019, 11: 351–358

    Article  CAS  Google Scholar 

  51. Schlenoff JB, Li M, Ly H. Stability and self-exchange in alkanethiol monolayers. J Am Chem Soc, 1995, 117: 12528–12536

    Article  CAS  Google Scholar 

  52. Feng Y, Wang Y, Wang H, et al. Engineering “hot” nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. Small, 2012, 8: 246–251

    Article  CAS  Google Scholar 

  53. Shen W, Lin X, Jiang C, et al. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards. Angew Chem, 2015, 127: 7416–7420

    Article  Google Scholar 

  54. Feng Y, Wang Y, Song X, et al. Depletion sphere: Explaining the number of Ag islands on Au nanoparticles. Chem Sci, 2017, 8: 430–436

    Article  CAS  Google Scholar 

  55. Durović MD, Bugarčić ZD, Heinemann FW, et al. Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione. Dalton Trans, 2014, 43: 3911–3921

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673117 and 91956109), Jiangsu Provincial Foundation for Specially-Appointed Professor, Jiangsu Science and Technology Plan (BK20211258), Nanjing Tech University (39837102 and 39837140), and SICAM Fellowship from Jiangsu National Synergetic Innovation Center for Advanced Materials.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zong J, Feng Y, and Chen H conceived the idea and explained the mechanism of structure synthesis, wrote and revised the manuscript. Zong J performed the syntheses and characterization of the nanomaterials. Ren Q, Tian X, and Xiang T participated in the discussion, gave suggestions on the mechanisms, and helped in the artworks.

Corresponding authors

Correspondence to Yuhua Feng  (冯宇华) or Hongyu Chen  (陈虹宇).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Jianpeng Zong is now a PhD student at the School of Chemistry and Molecular Engineering, Nanjing Tech University, under the supervision of Profs. Yuhua Feng and Hongyu Chen. His research focuses on the synthesis of Janus nanostructures based on interfacial energy control.

Yuhua Feng received his BSc and MSc degrees from Northeast Normal University and PhD degree from Nankai University in 2008. He joined Nanjing Tech University in 2017 as professor. His research interest focuses on the design and synthesis of hybrid nanostructures and their applications in plasmonic, SERS and catalysis.

Hongyu Chen received his BSc degree from the University of Science and Technology of China in 1998 and PhD degree from Yale University in 2004. He joined Nanyang Technological University in 2006 and became associate professor in 2011. He joined Nanjing Tech University as professor in 2016 and now he is a full professor at Westlake University. His research interest focuses on the development of new synthetic control of complex nanostructures.

Supplemental Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, J., Ren, Q., Tian, X. et al. The patchy growth mode: Modulation of the Au-Au interface via phenynyl ligands. Sci. China Mater. 65, 1687–1695 (2022). https://doi.org/10.1007/s40843-021-1942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1942-6

Keywords

Navigation